在Caffe的训练过程中打印验证集的预测结果

在Caffe训练GoogLeNet时,由于只能输出accuracy,为计算precision、recall和F1-measure,作者尝试在训练过程中打印验证集的预测结果。通过不打乱验证集数据、调整val的batch_size、添加Softmax和ArgMax层,最终在训练日志中获取预测结果,以便计算各类指标。这仅是临时解决方案,未来计划研究灰度图像预测问题,以修正Python接口预测的准确性。
摘要由CSDN通过智能技术生成

起因:Caffe里的GoogLeNet Inception V1只能输出对应于三个loss的accuracy,我想计算precision,recall和F1-measure。但是调用caffe的Python接口,结合训练集的mean文件、caffemodel文件和deploy.protxt文件对验证集预测,但是分类的结果错误很多,与网络训练输出的accuracy不符。我推断是训练样本是灰度图的问题,由于时间紧迫暂时没找到合适的解决办法。因此想到了在网络训练过程中打印验证集的预测结果作为权宜之计。

1.把create_imagenet.sh里生成val lmdb的shuffle项设置为false,也就是不打乱val集的数据。val可以自己先前制作数据集时预先打乱。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值