起因:Caffe里的GoogLeNet Inception V1只能输出对应于三个loss的accuracy,我想计算precision,recall和F1-measure。但是调用caffe的Python接口,结合训练集的mean文件、caffemodel文件和deploy.protxt文件对验证集预测,但是分类的结果错误很多,与网络训练输出的accuracy不符。我推断是训练样本是灰度图的问题,由于时间紧迫暂时没找到合适的解决办法。因此想到了在网络训练过程中打印验证集的预测结果作为权宜之计。
1.把create_imagenet.sh里生成val lmdb的shuffle项设置为false,也就是不打乱val集的数据。val可以自己先前制作数据集时预先打乱。