统计所有小于非负整数 n 的质数的数量。
示例:
输入: 10
输出: 4
解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
解题思路
判断质数的常规解法:如判断n是否为质数,只需要判断n是否能整除2~int(sqrt(n)),
本题题解
厄拉多塞筛法
比如说求20以内质数的个数,首先0,1不是质数.2是第一个质数,然后把20以内所有2的倍数划去.2后面紧跟的数即为下一个质数3,然后把3所有的倍数划去.3后面紧跟的数即为下一个质数5,再把5所有的倍数划去.以此类推.
class Solution:
def countPrimes(self, n: int) -> int:
if n<=2:
return 0
# 生成一个n维列表
isPrime = [1] * n
# 0和1不是质数,所以前两个位置为0
isPrime[0] = isPrime[1] = 0
# 此时从index=2开始遍历,isPrime[2]=0,表明第一个质数为2,
#然后将2的倍数对应的索引全部赋0,以此类推,剩下的索引对应的书就是质数
# 这里没有用(2, n), 因为求n以内的质数,只要将sqrt(n)+1以内质数的倍数全部删掉,
# 剩下的就全是质数
for i in range(2, int(n**0.5)+1):
if isPrime[i]==1:
# 在划去的时候从i*i开始划去,比i*i小的比如i*(i-1)在计算(i-1)的时候就已经划掉了
isPrime[i*i:n:i] = [0] * len(isPrime[i*i:n:i])
return sum(isPrime)