HDU 5823 color II(状压DP)


Problem Description
You are given an undirected graph with n vertices numbered 0 through n-1.

Obviously, the vertices have 2^n - 1 non-empty subsets. For a non-empty subset S, we define a proper coloring of S is a way to assign each vertex in S a color, so that no two vertices in S with the same color are directly connected by an edge. Assume we've used k different kinds of colors in a proper coloring. We define the chromatic number of subset S is the minimum possible k among all the proper colorings of S.

Now your task is to compute the chromatic number of every non-empty subset of the n vertices.


Input
First line contains an integer t. Then t testcases follow.

In each testcase: First line contains an integer n. Next n lines each contains a string consisting of '0' and '1'. For 0<=i<=n-1 and 0<=j<=n-1, if the j-th character of the i-th line is '1', then vertices i and j are directly connected by an edge, otherwise they are not directly connected.

The i-th character of the i-th line is always '0'. The i-th character of the j-th line is always the same as the j-th character of the i-th line.

For all testcases, 1<=n<=18. There are no more than 100 testcases with 1<=n<=10, no more than 3 testcases with 11<=n<=15, and no more than 2 testcases with 16<=n<=18.


Output
For each testcase, only print an integer as your answer in a line.

This integer is determined as follows:
We define the identity number of a subset S is id(S)=∑v∈S2v. Let the chromatic number of S be fid(S).

You need to output ∑1<=id(S)<=2n−1fid(S)×233id(S)mod232.


Sample Input
2
4
0110
1010
1101
0010
4
0111
1010
1101
1010


Sample Output
1022423354
2538351020

Hint

For the first test case, ans[1..15]= {1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3}


题意:给一个N*N的矩阵,a[i][j]=1表示点i与点j相连。对于N个点有2^n-1个子集,相连的点不能同色,问对于每个子集最少需要多少颜色。

ans[i]表示i(二进制)状态下的最少颜色数,输出结果∑ans[i]×233^i mod 2^32.

#include <iostream>
#include <stdio.h>
#include <cmath>
#include <algorithm>
#include <iomanip>
#include <cstdlib>
#include <string.h>
#include <vector>
#include <queue>
#include <stack>
#include <ctype.h>
using namespace std;

typedef unsigned int ui;

ui p233[300005];
int temp[300005][20];
int col[300005][20];   //记录i状态xia

void init()     //预处理233的幂次,以及每个状态temp
{
    memset(p233,0,sizeof(p233));
    memset(temp,0,sizeof(temp));
    p233[0]=1;
    for (int i=1;i<=(1<<18);i++)
        p233[i]=p233[i-1]*(unsigned int)233;
    for(int i=0;i<=300000;i++)
    {
        int x=i;
        int cnt=0;
        while(x>0)
        {
            temp[i][cnt]=x%2;
            x/=2;
            cnt++;
        }
    }
}

char ss[20][20];
int maps[20][20];    //存图
ui dp[300005];      //表示i状态时最少需要多少种颜色
int vis[20];

int main()
{
    init();
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(maps,0,sizeof(maps));
        memset(col,0,sizeof(col));
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%s",ss[i]);
        }
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(ss[i][j]=='0') maps[i][j]=0;
                else maps[i][j]=1;
            }
        }
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)    //当状态中只有一个点的时候
        {
            col[1<<i][i]=1;   //这个点颜色标为1
            dp[i]=1;          //这个状态需要一种颜色
        }
        for(int i=1;i<(1<<n);i++)
        {
            int color=n+1;
            int pos=n+1;
            for(int j=0;j<n;j++)
            {
                if(temp[i][j]==1)
                {
                    memset(vis,0,sizeof(vis));
                    for(int k=0;k<n;k++)
                    {
                        if(maps[j][k]==1)
                        {
                            vis[col[i^(1<<j)][k]]=1;    //统计新增加的这个点与哪些颜色相连
                        }
                    }
                    for(int k=1;k<=n;k++)
                    {
                        if(vis[k]==0)
                        {
                            if(color>k)
                            {
                                color=k;   //color表示最小的不相连的颜色
                                pos=j;
                            }
                            break;
                        }
                    }
                }
            }
            for(int j=0;j<n;j++)
            {
                if(temp[i][j]==1)
                {
                    col[i][j]=col[i^(1<<pos)][j];
                }
            }
            col[i][pos]=color;
            if(color>dp[i^(1<<pos)]) dp[i]=dp[i^(1<<pos)]+1;   //如果与所有的颜色都相连,就要新增一种颜色
            else dp[i]=dp[i^(1<<pos)];
        }
        ui res=0;
        for(int i=1;i<(1<<n);i++)
        {
            res=res+p233[i]*dp[i];   //unsigned int自动取膜
        }
        printf("%u\n",res);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值