TensorFlow入门笔记

这个呢,是Coursera上面的一个Tutorial,我发现用它来开始学习TensorFlow真的非常友好,我就顺便自己再练习一遍并把它翻译过来啦,大牛清喷,我只是小白,在这里学习交流

1. Tensorflow Library

首先就是import tensorflow的各种库啦,在这里要实现:

  • 数据的初始化
  • Start a Session
  • 训练算法
  • 建立一个神经网络
import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict

%matplotlib inline
np.random.seed(1)

使用TensorFlow写一个程序基本的步骤:

  1. 创建变量
  2. 写入对这些变量的操作
  3. 初始化变量
  4. 创建Session
  5. 运行Sessin

例如,我们在深度学习中的Loss Function 该怎么实现呢?


y_hat = tf.constant(36, name='y_hat')            # 设置 y_hat 为数字9
y = tf.constant(39, name='y')                    # 设置 y 为6

loss = tf.Variable((y - y_hat)**2, name='loss')  # loss function

init = tf.global_variables_initializer()         # 添加节点用于初始化所有变量
                                                 
a = tf.constant(2)
b = tf.constant(10)
c = tf.multiply(a,b)
print(c)

print结果 session.run(init) # 初始化 print(session.run(loss))

运行结果肯定是9 啦

为了更好的理解这里的Session的意思,我们再举一个例子,

a = tf.constant(2)
b = tf.constant(10)
c = tf.multiply(a,b)
print(c)

运行结果是20吗?很可惜,不是,结果是

Tensor("Mul:0", shape=(), dtype=int32)


在这里这个小程序并没有运行

我们加上

sess = tf.Session()
print(sess.run(c))

结果: 20

当然,运行Session之前,千万不要忘了初始化你的变量,这点很重要。

TensorFlow有两种方法创建Session:

方法一:

sess = tf.Session()
result = sess.run(..., feed_dict = {...})
sess.close() # Close the session 

方法二:

with tf.Session() as sess: 
    result = sess.run(..., feed_dict = {...})
    # 这里不需要colse session

接下来我们要理解一个很重要的概念,placeholder,用于传递进来的训练样本,你可以理解为一个占位符,它不用指定初始值,可在运行时,通过Session.run()的feed_dict参数指定,参见tf.placeholder()

举个例子吧,

x = tf.placeholder(tf.int64, name = 'x')
print(sess.run(2 * x, feed_dict = {x: 3}))
sess.close()
结果:6

1.1 Linear Function

我们用linear function : Y = WX + b  来写一个小程序。

先说明一下,权重W的形状是 (4, 3), X是(3, 1) , b是(4, 1),至于,tf.matmul()tf.add()np.random.randn(),点链接吧

def linear_function():    
    np.random.seed(1)
 
    X = tf.constant(np.random.randn(3, 1), name = 'X')
    W = tf.constant(np.random.randn(4, 3), name = 'W')
    b = tf.constant(np.random.randn(4, 1), name = 'b')
    Y = tf.add(tf.matmul(W,X), b)
   
    sess = tf.Session()
    result = sess.run(Y)

    sess.close()

    return result
print( "result = " + str(linear_function()))
试一下,结果为
result = [[-2.15657382]
          [ 2.95891446]
          [-1.08926781]
          [-0.84538042]]


我们接下来再举几个深度学习中常用的函数作为例子,帮助我们更好的熟悉TensorFlow的使用

1.2 Sigmoid

关于sigmoid的介绍,点这里,简单来说,sigmoid函数再神经网络中被当作阈值函数,将变量映射到 (0, 1)之间。

需要说一下的是,Tensorflow中有 tf.sigmoid() 或者 tf.softmax() 这种函数,这里作练习TensorFlow之用。

def sigmoid(z):

    x = tf.placeholder(tf.float32, name = 'x')

    sigmoid = tf.sigmoid(x)

    with tf.Session() as sess:
        result = sess.run(sigmoid, feed_dict = {x: z})
   
    return result

1.3 Cost Function

逻辑回归的cost function为

其中 a = sigmoid (z),写成


如果不理解cost function的含义,可以参考

代码如下:

def cost(logits, labels):
    """
    logits -- z 向量在最后sigmoid函数之前的节点
    labels -- y
    """
   
    z = tf.placeholder(tf.float32, name = 'z')
    y = tf.placeholder(tf.float32, name = 'y')
    cost = tf.nn.sigmoid_cross_entropy_with_logits(logits = z, labels = y)

    sess = tf.Session()
    cost = sess.run(cost, feed_dict = {z: logits, y: labels})
    sess.close()

    
    return cost

2. 使用TensorFlow建立一个神经网络

2.0  目标

 我们训练一个识别手势的神经网络,6种状态如下图所示:


训练集合为1080 张 64 *64 的图片,每个数字有180张图片

测试集合为 120 张 64*64 的图片,每个数字有20张图片

需要指出的是,这里的数据集里每张图片已经被标记了label,label就是图片代表的含义

首先加载数据集:

X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

改变index的值可以查看数据集中的图片

index = 0
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

接下来,我们要将图像数据集平坦化,再将其归一化,再将每个标签转化为一个onehot矢量:

关于onehot,在这里

# 平坦化训练集和测试集
X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
# 归一化,也就是除以255
X_train = X_train_flatten/255.
X_test = X_test_flatten/255.
# 将每个标签转化为onehot矢量
Y_train = convert_to_one_hot(Y_train_orig, 6)
Y_test = convert_to_one_hot(Y_test_orig, 6)

在往下写之前,声明神经网络各层的内容为:

LINEAR ->RELU ->LINEAR ->RELU ->LINEAR ->SOFTMAX


以一层为例,一个神经元可以形象地表示为:
    

2.1 placeholders

老生常谈。

def create_placeholders(n_x, n_y):
#n_x -- 平坦化以后数据的大小64 * 64 * 3 = 12288
#n_y -- class的数量 0,1,2,3,4,5,所以大小为6
#Y -- 标签的占位, 形状[n_y, None] ,类型"float"
#X -- 输入数据的占位,形状[n_x, None],类型"float" #None可以使输入数据的数量更加灵活
Y = tf.placeholder(tf.float32, shape = (n_y, None), name = 'PlaceHolder_2')
X = tf.placeholder(tf.float32, shape = (n_x, None), name = 'PlaceHolder_1')
return X, Y

2.2 初始化系数

def initialize_parameters():
tf.set_random_seed(1) # 这一行仅仅是为了让每次生成的随机数相同,加不加都可以
W1 = tf.get_variable('W1', [25, 12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable('b1', [25, 1], initializer = tf.zeros_initializer())
b2 = tf.get_variable('b2', [12, 1], initializer = tf.zeros_initializer())
W2 = tf.get_variable('W2', [12, 25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
W3 = tf.get_variable('W3', [6, 12], initializer = tf.contrib.layers.xavier_initializer(seed = 1)) b3 = tf.get_variable('b3', [6, 1], initializer = tf.zeros_initializer())
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3}
return parameters

2.3 TensorFlow中的前向传播

def forward_propagation(X, parameters):
    """
    LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
    X --输入的数据集,形状为 (一个example的大小,example的数量)
    parameters -- 字典类型包含了 "W1", "b1", "W2", "b2", "W3", "b3"
    Z3 -- 最后一个LINEAR神经元的输出
    """
    
    # 从 parameters中读取各个系数
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    W3 = parameters['W3']
    b3 = parameters['b3']
    
 Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
 A1 = tf.nn.relu(Z1)               # A1 = relu(Z1)
 Z2 = tf.add(tf.matmul(W2, A1), b2)# Z2 = np.dot(W2, a1) + b2
 A2 = tf.nn.relu(Z2)               # A2 = relu(Z2)
 Z3 = tf.add(tf.matmul(W3, A2), b3)# Z3 = np.dot(W3,Z2) + b3   
return Z3

2.4 计算 Cost

在这里我们使用 tf.reduce.mean() 来计算成本函数:

 tf.transpose()

def compute_cost(Z3, Y):
    """
    Arguments:
    Z3 -- 前向传播的输出 ,形状为 (6, number of examples)
    Y -- "true" 标签组成的向量, 形状同 Z3
    """
    
    logits = tf.transpose(Z3)
    labels = tf.transpose(Y)

    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))

    return cost

2.5 反向传播与系数更新

TensorFlow 非常方便因为仅仅使用一句话就可以完成反向传播。

在计算完cost function以后,创建一个叫optimizer的对象,然后调用

optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)

它会对cost和learning_rate 进行优化。


2.6 建立模型


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值