随机变量列的四种收敛性

极限定理是研究随机变量列的收敛性,在学习中遇到了随机变量列的四种收敛性:几乎处处收敛(a.e.收敛)、以概率收敛(P-收敛)、依分布收敛(d-收敛)、k阶矩收敛,下面是对它们的吐血整理。

 

考虑一个随机变量列{δn},c为一个常数。

由于随机性不能直接刻画收敛性,因此这4种收敛性都是在进行了某种去随机性的转化之后再去刻画的。

 

a.e-收敛 δ?→? (?.?)

转化点:从随机变量到随机变量的一个实现,从Ω到ω,转成考虑{δn(ω)}的收敛性

定义形式:

解读:几乎对每一个ωϵΩ,都有lim?→∞δ?(ω)=c。几乎处处(almost everywhere)收敛。

于是选定一个非常小的?>0,可以找到一个??>0,使得对于∀?>??,满足?(|δ?−?|<?)=1,

因此对于这个随机变量列的一个实现{δ?(ω)},几乎一定有:∀?>??,|δ?−?|<?

相关:强大数定理,c=0,应用主要定理解决一些估计和近似问题。

 

P-收敛 δ?→? (?)

转化点:用P概率测度来应对随机性

定义形式:

解读:任给定一个?>0,就可以把随机变量列{δn}转化成数列{?|δ?|<?},从而要求这个数列收敛到1。

于是选定一个非常小的?>0,对应存在一个数列{?|δ?|<?},再设定一个非常小的γ>0,于是可以找到一个?(?,γ)>0,使得对于∀?>?(?,γ),满足?(|δ?−?|<?)>1−γ,

因此对于这个随机变量列的一个实现{δ?(ω)},有大于?−?的概率满足当?>?(?,γ)时,|δ?−?|<?

相关:大数定理,c=0,应用主要定理解决一些估计和近似问题。

 

d-收敛 δ?→?(?)

转化点:用P概率测度来应对随机性,同时不再是刻画收敛到一个固定常数的渐进性,而是收敛到某一个分布函数的渐进性

定义形式:

解读:任给定?∈?1,就可以把随机变量列{δn}转化成数列,从而要求这个数列收敛到对应的F_Y(x)

应用:任给定?∈?1,当n很大的时候,F_\delta_n(x)F_Y(x)很接近,那么换个角度看,当n很大时,固定n不变,把x视为变量,于是所有的x点对应形成了随机变量δ?的分布函数F_\delta_n(x),而这个分布函数在每一个x点上都与对应的F_Y(x)的值很接近,即F_Y(x)可以作为这个分布函数的一个近似分布。

相关:中心极限定理,Y=Z~N(0,1), 应用主要定理解决一些估计和近似问题。

 

k阶矩收敛 X_n \overset{k}{\rightarrow} X

转化点:用矩测度来应对随机性,同时刻画的不再是从随机变量列到某个常数或者随机变量列的分布函数到某个分布函数的渐收敛性,而是从随机变量列到某个随机变量的在k阶矩刻画下的收敛性。

定义形式:

解读:把随机变量列{Xn}转化成数列?{X_n},然后要求这个数列收敛到一个随机变量X的k阶矩

相关:

1. 特征函数列的收敛性,实际上是复数值随机变量列{{e^{jtX_n}}}的1阶矩收敛到{e^{jtX}}

了解特征函数列的收敛性与分布收敛性的关系,利用特征函数概念及收敛性,进一步研究多维正态过程。

2. 均方收敛 l.i.m Xn=X 或者 Xn→X (sq)

均方收敛性实际是二阶矩收敛(k=2时的k阶矩收敛),即

它是二阶矩过程随机分析及平稳过程研究的重要基础。

 

参考书

葛余博,葛菱南.随机过程及其应用[M].清华大学出版社:北京,2013:197.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值