实变函数论4-可测函数4-依测度收敛2:“依测度收敛”与“几乎处处收敛”关系【“依测度收敛”⇏“几乎处处收敛”;“几乎处处收敛”⇏“依测度收敛”】

在这里插入图片描述

依测度收敛和我们熟知的处处收敛几乎处处收敛的概念是有很大区别的.我们不妨举例加以说明.

例1
依测度收敛而处处不收敛的函数列.

E = ( 0 , 1 ] , E = ( 0 , 1 ] , E=(0,1], E E E 等分,定义两个函数:

f 1 ( 1 ) ( x ) = { 1 , x ∈ ( 0 , 1 2 ] , 0 , x ∈ ( 1 2 , 1 ] . f _ { 1 } ^ { ( 1 ) } ( x ) = \left\{ \begin{array} { l l } 1 , & x \in \left( 0 , \frac { 1 } { 2 } \right] , \\ 0 , & x \in \left( \frac { 1 } { 2 } , 1 \right] . \end{array} \right. f1(1)(x)={1,0,x(0,21],x(21,1].

f 2 ( 1 ) ( x ) = { 0 , x ∈ ( 0 , 1 2 ] , 1 , x ∈ ( 1 2 , 1 ] . f _ { 2 } ^ { ( 1 ) } ( x ) = \left\{ \begin{array} { l l } 0 , & x \in \left( 0 , \frac { 1 } { 2 } \right] , \\ 1 , & x \in \left( \frac { 1 } { 2 } , 1 \right] . \end{array} \right. f2(1)(x)={0,1,x(0,21],x(21,1].

然后将 ( 0 , 1 ] ( 0 , 1 ] (0,1] 四 等分、八等分,等等.一般地,对每个 n , n , n, 2 n 2 ^ { n } 2n 个 函数:

f j ( n ) ( x ) = { 1 , x ∈ ( j − 1 2 n , j 2 n ] , j = 1 , 2 , ⋯   , 2 n . 0 , x ∉ ( j − 1 2 n , j 2 n ] , f _ { j } ^ { ( n ) } ( x ) = \left\{ \begin{array} { l l } 1 , & x \in \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] , & j = 1 , 2 , \cdots , 2 ^ { n } . \\ 0 , & x \notin \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] , \end{array} \right. fj(n)(x)={1,0,x(2nj1,2nj],x/(2nj1,2nj],j=1,2,,2n.

我们把 { f j ( n ) ; j = 1 , 2 , ⋯   , 2 n } \left\{ f _ { j } ^ { ( n ) } ; j = 1 , 2 , \cdots , 2 ^ { n } \right\} {fj(n);j=1,2,,2n}先 按 n n n 后按 j j j 的 顺序逐个地排成一列:

f 1 ( 1 ) ( x ) , f 2 ( 1 ) ( x ) , ⋯   , f 1 ( n ) ( x ) , f 2 ( n ) ( x ) , ⋯   , f 2 n ( n ) ( x ) , ⋯ ( 1 ) f _ { 1 } ^ { ( 1 ) } ( x ) , f _ { 2 } ^ { ( 1 ) } ( x ) , \cdots , f _ { 1 } ^ { ( n ) } ( x ) , f _ { 2 } ^ { ( n ) } ( x ) , \cdots , f _ { 2^n } ^ { ( n ) } ( x ) , \cdots \quad\quad(1) f1(1)(x),f2(1)(x),,f1(n)(x),f2(n)(x),,f2n(n)(x),(1)

f j ( n ) ( x ) f _ { j } ^ { ( n ) } ( x ) fj(n)(x) 在这个序列中是第 N = 2 n − 2 + j N = 2 ^ { n } - 2 + j N=2n2+j个函数.可以证明这个序列是依测度收敛于零的.

这是因为对任何 σ > 0 , E [ ∣ f j ( n ) − 0 ∣ ⩾ σ ] \sigma > 0 , E \left[ \left| f _ { j } ^ { ( n ) } - 0 \right| \geqslant \sigma \right] σ>0,E[ fj(n)0 σ]或是空集(当 σ > 1 ) , \sigma > 1 ) , σ>1), 或是 ( j − 1 2 n , j 2 n ] \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] (2nj1,2nj](当 0 < σ ⩽ 1 ) , 0 < \sigma \leqslant 1 ) , 0<σ1), 所以

m ( E [ ∣ f j ( n ) − 0 ∣ ⩾ σ ] ) ⩽ 1 2 n ( w 当 σ > 1  时 , ± % 为 0 ) . m \left( E \left[ \left| f _ { j } ^ { ( n ) } - 0 \right| \geqslant \sigma \right] \right) \leqslant \frac { 1 } { 2 ^ { n } } \left( \frac { w } { 当 } \sigma > 1 \mathrm { ~ 时 } , \pm \% 为 0 \right) . m(E[ fj(n)0 σ])2n1(wσ>1 ,±%0).

由于当 N = 2 n − 2 + j ( j = 1 , 2 , ⋯   , 2 n ) N = 2 ^ { n } - 2 + j \left( j = 1 , 2 , \cdots , 2 ^ { n } \right) N=2n2+j(j=1,2,,2n) 趋于 ∞ \infty 时, n → ∞ . n \rightarrow \infty . n∞. 由此可见

lim ⁡ N → ∞ m ( E [ ∣ f j ( n ) − 0 ∣ ⩾ σ ] ) = 0 , \lim _ { N \rightarrow \infty } m \left( E \left[ \left| f _ { j } ^ { ( n ) } - 0 \right| \geqslant \sigma \right] \right) = 0 , Nlimm(E[ fj(n)0 σ])=0,

f j ( n ) ( x ) ⇒ 0. f _ { j } ^ { ( n ) } ( x ) \Rightarrow 0 . fj(n)(x)0.

但是函数列(1)在 ( 0 , 1 ] ( 0 , 1 ] (0,1] 上的任何一点都不收敛.事实上,对任何点 x 0 ∈ ( 0 , 1 ] , x _ { 0 } \in ( 0 , 1 ] , x0(0,1], 无论 n n n 多么大,总存在 j , j , j, 使 x 0 ∈ ( j − 1 2 n , j 2 n ] , x _ { 0 } \in \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] , x0(2nj1,2nj],因而 f j ( n ) ( x 0 ) = 1 , f _ { j } ^ { ( n ) } \left( x _ { 0 } \right) = 1 , fj(n)(x0)=1, 然而 f j + 1 ( n ) ( x 0 ) = 0 f _ { j + 1 } ^ { ( n ) } \left( x _ { 0 } \right) = 0 fj+1(n)(x0)=0 或$f _ { j - 1 } ^ { ( n ) } \left( x _ { 0 } \right) =$0,换言之,对任何 x 0 ∈ ( 0 , 1 ] , x _ { 0 } \in ( 0 , 1 ] , x0(0,1], { f j ( n ) ( x 0 ) } \left\{ f _ { j } ^ { ( n ) } \left( x _ { 0 } \right) \right\} {fj(n)(x0)}中必有两个子列,一个恒为1,另一个恒为零,所以序列(1)在 ( 0 , 1 ] ( 0 , 1 ] (0,1] 上任何点都是发散的.

反过来,一个 a . e . a . e . a.e. 收敛的函数列也可以不是依测度收敛的。

例2
E = ( 0 , ∞ ) , E = ( 0 , \infty ) , E=(0,), 作函数列 f n ( x ) = { 1 , x ∈ ( 0 , n ] , 0 , x ∈ ( n , ∞ ) , n = 1 , 2 , ⋯   . f _ { n } ( x ) = \left\{ \begin{array} { l l l } 1 , & x \in ( 0 , n ] , \\ 0 , & x \in ( n , \infty ) , & n = 1 , 2 , \cdots . \end{array} \right. fn(x)={1,0,x(0,n],x(n,),n=1,2,.显然 f n ( x ) → 1 ( n → ∞ ) , f _ { n } ( x ) \rightarrow 1 ( n \rightarrow \infty ) , fn(x)1(n), x ∈ E . x \in E . xE. 但是当 0 < σ < 1 0 < \sigma < 1 0<σ<1 时, E [ ∣ f n − 1 ∣ ⩾ σ ] = ( n , ∞ ) , E \left[ \left| f _ { n } - 1 \right| \geqslant \sigma \right] = ( n , \infty ) , E[fn1σ]=(n,), m ( n , ∞ ) = ∞ . m ( n , \infty ) = \infty . m(n,)=∞. 这说明 { f n } \left\{ f _ { n } \right\} {fn}不依测度收敛于1.

尽管两种收敛区别很大,一种收敛不能包含另一种收敛,但是“里斯定理”反映出它们还是有密切联系的,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值