依测度收敛和我们熟知的处处收敛或几乎处处收敛的概念是有很大区别的.我们不妨举例加以说明.
例1
依测度收敛而处处不收敛的函数列.
取 E = ( 0 , 1 ] , E = ( 0 , 1 ] , E=(0,1], 将 E E E 等分,定义两个函数:
f 1 ( 1 ) ( x ) = { 1 , x ∈ ( 0 , 1 2 ] , 0 , x ∈ ( 1 2 , 1 ] . f _ { 1 } ^ { ( 1 ) } ( x ) = \left\{ \begin{array} { l l } 1 , & x \in \left( 0 , \frac { 1 } { 2 } \right] , \\ 0 , & x \in \left( \frac { 1 } { 2 } , 1 \right] . \end{array} \right. f1(1)(x)={1,0,x∈(0,21],x∈(21,1].
f 2 ( 1 ) ( x ) = { 0 , x ∈ ( 0 , 1 2 ] , 1 , x ∈ ( 1 2 , 1 ] . f _ { 2 } ^ { ( 1 ) } ( x ) = \left\{ \begin{array} { l l } 0 , & x \in \left( 0 , \frac { 1 } { 2 } \right] , \\ 1 , & x \in \left( \frac { 1 } { 2 } , 1 \right] . \end{array} \right. f2(1)(x)={0,1,x∈(0,21],x∈(21,1].
然后将 ( 0 , 1 ] ( 0 , 1 ] (0,1] 四 等分、八等分,等等.一般地,对每个 n , n , n, 作 2 n 2 ^ { n } 2n 个 函数:
f j ( n ) ( x ) = { 1 , x ∈ ( j − 1 2 n , j 2 n ] , j = 1 , 2 , ⋯ , 2 n . 0 , x ∉ ( j − 1 2 n , j 2 n ] , f _ { j } ^ { ( n ) } ( x ) = \left\{ \begin{array} { l l } 1 , & x \in \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] , & j = 1 , 2 , \cdots , 2 ^ { n } . \\ 0 , & x \notin \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] , \end{array} \right. fj(n)(x)={1,0,x∈(2nj−1,2nj],x∈/(2nj−1,2nj],j=1,2,⋯,2n.
我们把 { f j ( n ) ; j = 1 , 2 , ⋯ , 2 n } \left\{ f _ { j } ^ { ( n ) } ; j = 1 , 2 , \cdots , 2 ^ { n } \right\} {fj(n);j=1,2,⋯,2n}先 按 n n n 后按 j j j 的 顺序逐个地排成一列:
f 1 ( 1 ) ( x ) , f 2 ( 1 ) ( x ) , ⋯ , f 1 ( n ) ( x ) , f 2 ( n ) ( x ) , ⋯ , f 2 n ( n ) ( x ) , ⋯ ( 1 ) f _ { 1 } ^ { ( 1 ) } ( x ) , f _ { 2 } ^ { ( 1 ) } ( x ) , \cdots , f _ { 1 } ^ { ( n ) } ( x ) , f _ { 2 } ^ { ( n ) } ( x ) , \cdots , f _ { 2^n } ^ { ( n ) } ( x ) , \cdots \quad\quad(1) f1(1)(x),f2(1)(x),⋯,f1(n)(x),f2(n)(x),⋯,f2n(n)(x),⋯(1)
f j ( n ) ( x ) f _ { j } ^ { ( n ) } ( x ) fj(n)(x) 在这个序列中是第 N = 2 n − 2 + j N = 2 ^ { n } - 2 + j N=2n−2+j个函数.可以证明这个序列是依测度收敛于零的.
这是因为对任何 σ > 0 , E [ ∣ f j ( n ) − 0 ∣ ⩾ σ ] \sigma > 0 , E \left[ \left| f _ { j } ^ { ( n ) } - 0 \right| \geqslant \sigma \right] σ>0,E[ fj(n)−0 ⩾σ]或是空集(当 σ > 1 ) , \sigma > 1 ) , σ>1), 或是 ( j − 1 2 n , j 2 n ] \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] (2nj−1,2nj](当 0 < σ ⩽ 1 ) , 0 < \sigma \leqslant 1 ) , 0<σ⩽1), 所以
m ( E [ ∣ f j ( n ) − 0 ∣ ⩾ σ ] ) ⩽ 1 2 n ( w 当 σ > 1 时 , ± % 为 0 ) . m \left( E \left[ \left| f _ { j } ^ { ( n ) } - 0 \right| \geqslant \sigma \right] \right) \leqslant \frac { 1 } { 2 ^ { n } } \left( \frac { w } { 当 } \sigma > 1 \mathrm { ~ 时 } , \pm \% 为 0 \right) . m(E[ fj(n)−0 ⩾σ])⩽2n1(当wσ>1 时,±%为0).
由于当 N = 2 n − 2 + j ( j = 1 , 2 , ⋯ , 2 n ) N = 2 ^ { n } - 2 + j \left( j = 1 , 2 , \cdots , 2 ^ { n } \right) N=2n−2+j(j=1,2,⋯,2n) 趋于 ∞ \infty ∞ 时, n → ∞ . n \rightarrow \infty . n→∞. 由此可见
lim N → ∞ m ( E [ ∣ f j ( n ) − 0 ∣ ⩾ σ ] ) = 0 , \lim _ { N \rightarrow \infty } m \left( E \left[ \left| f _ { j } ^ { ( n ) } - 0 \right| \geqslant \sigma \right] \right) = 0 , N→∞limm(E[ fj(n)−0 ⩾σ])=0,
即 f j ( n ) ( x ) ⇒ 0. f _ { j } ^ { ( n ) } ( x ) \Rightarrow 0 . fj(n)(x)⇒0.
但是函数列(1)在 ( 0 , 1 ] ( 0 , 1 ] (0,1] 上的任何一点都不收敛.事实上,对任何点 x 0 ∈ ( 0 , 1 ] , x _ { 0 } \in ( 0 , 1 ] , x0∈(0,1], 无论 n n n 多么大,总存在 j , j , j, 使 x 0 ∈ ( j − 1 2 n , j 2 n ] , x _ { 0 } \in \left( \frac { j - 1 } { 2 ^ { n } } , \frac { j } { 2 ^ { n } } \right] , x0∈(2nj−1,2nj],因而 f j ( n ) ( x 0 ) = 1 , f _ { j } ^ { ( n ) } \left( x _ { 0 } \right) = 1 , fj(n)(x0)=1, 然而 f j + 1 ( n ) ( x 0 ) = 0 f _ { j + 1 } ^ { ( n ) } \left( x _ { 0 } \right) = 0 fj+1(n)(x0)=0 或$f _ { j - 1 } ^ { ( n ) } \left( x _ { 0 } \right) =$0,换言之,对任何 x 0 ∈ ( 0 , 1 ] , x _ { 0 } \in ( 0 , 1 ] , x0∈(0,1], 在 { f j ( n ) ( x 0 ) } \left\{ f _ { j } ^ { ( n ) } \left( x _ { 0 } \right) \right\} {fj(n)(x0)}中必有两个子列,一个恒为1,另一个恒为零,所以序列(1)在 ( 0 , 1 ] ( 0 , 1 ] (0,1] 上任何点都是发散的.
反过来,一个 a . e . a . e . a.e. 收敛的函数列也可以不是依测度收敛的。
例2
取
E
=
(
0
,
∞
)
,
E = ( 0 , \infty ) ,
E=(0,∞), 作函数列
f
n
(
x
)
=
{
1
,
x
∈
(
0
,
n
]
,
0
,
x
∈
(
n
,
∞
)
,
n
=
1
,
2
,
⋯
.
f _ { n } ( x ) = \left\{ \begin{array} { l l l } 1 , & x \in ( 0 , n ] , \\ 0 , & x \in ( n , \infty ) , & n = 1 , 2 , \cdots . \end{array} \right.
fn(x)={1,0,x∈(0,n],x∈(n,∞),n=1,2,⋯.显然
f
n
(
x
)
→
1
(
n
→
∞
)
,
f _ { n } ( x ) \rightarrow 1 ( n \rightarrow \infty ) ,
fn(x)→1(n→∞), 当
x
∈
E
.
x \in E .
x∈E. 但是当
0
<
σ
<
1
0 < \sigma < 1
0<σ<1 时,
E
[
∣
f
n
−
1
∣
⩾
σ
]
=
(
n
,
∞
)
,
E \left[ \left| f _ { n } - 1 \right| \geqslant \sigma \right] = ( n , \infty ) ,
E[∣fn−1∣⩾σ]=(n,∞),且
m
(
n
,
∞
)
=
∞
.
m ( n , \infty ) = \infty .
m(n,∞)=∞. 这说明
{
f
n
}
\left\{ f _ { n } \right\}
{fn}不依测度收敛于1.
尽管两种收敛区别很大,一种收敛不能包含另一种收敛,但是“里斯定理”反映出它们还是有密切联系的,