概率论-4.3随机变量序列的两种收敛性(待补充)

随机变量序列的收敛性有多种:
依概率收敛(大数定律:序列的算术平均概率收敛于序列平均的算术平均)
按分布收敛(中心极限定理:随机变量序列和的极限分布何时为正态分布)
……

依概率收敛:
设{Xi}为一随机变量序列,X为一随机变量
若对任意的a都有
lim(n->正无穷) P(| Xn-X |>=a )->0
则称{Xi}依概率收敛于X
记作P(Xn->X)
期望或概率的作用只会在大量试验的前提下得以体现
随着试验次数的增加,期望或概率的作用越来越明显

定理:
若有P(Xn->X),P(Yn->Y)
则有
P(Xn+Yn->X+Y)
P(Xn+Yn->X+Y)
P(Xn * Yn->X * Y)
P(Xn / Yn->X / Y)
证明:

按分布收敛、弱收敛
……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值