随机变量序列的收敛性有多种:
依概率收敛(大数定律:序列的算术平均概率收敛于序列平均的算术平均)
按分布收敛(中心极限定理:随机变量序列和的极限分布何时为正态分布)
……
依概率收敛:
设{Xi}为一随机变量序列,X为一随机变量
若对任意的a都有
lim(n->正无穷) P(| Xn-X |>=a )->0
则称{Xi}依概率收敛于X
记作P(Xn->X)
期望或概率的作用只会在大量试验的前提下得以体现
随着试验次数的增加,期望或概率的作用越来越明显
定理:
若有P(Xn->X),P(Yn->Y)
则有
P(Xn+Yn->X+Y)
P(Xn+Yn->X+Y)
P(Xn * Yn->X * Y)
P(Xn / Yn->X / Y)
证明:
按分布收敛、弱收敛
……