时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
给定一个包含 N × M 个单位正方形的矩阵,矩阵中每个正方形上都写有一个数字。
对于两个单位正方形 a 和 b ,如果 a 和 b 有一条共同的边,并且它们的数字相等,那么 a 和 b 是相连的。
相连还具有传递性,如果 a 和 b 相连,b 和 c 相连,那么 a 和 c 也相连。
给定一个单位正方形 s,s 和与 s 相连的所有单位正方形会组成一个区域 R 。小Hi想知道 R 的周长是多少?
输入
第一行包含4个整数 N , M ,x 和 y , N 和 M 是矩阵的大小, x 和 y 是给定的单位正方形 s 的坐标。(1 ≤ N , M ≤ 100, 0 ≤ x < N , 0 ≤ y < M )
以下是一个 N × M 的矩阵 A,Aij 表示相应的正方形上的数字。(0 ≤ Aij ≤ 100)
输出
输出一个整数表示 R 的周长。
样例输入
6 5 2 1
0 0 1 2 2
3 1 1 3 7
4 3 1 3 7
4 3 0 3 2
4 3 3 0 1
4 5 5 5 5
样例输出
10
提交结果如下:
看了题目第一反应就是深搜,于是开始写,第一遍提交,CE,编译环境选错了,改再来一遍,80分有些郁闷,后来想到如果是下面这种情况我的代码就跑不出正确答案,本来想这记录状态之后再来一遍深搜,但是觉得太麻烦,可以根据flag数组记录的结果遍历一遍数组并且记录某个单位正方形和其相邻的正方形的边数,之后通过dfs出来的结果和此次遍历的结果想减即可得出正确答案。
下面是AC的代码:
#include<iostream>
#include<cstring>
#include<string.h>
using namespace std;
#define MAX 1000+5
int N,M;
int x,y,ans=1;
int count=0;
int map[MAX][MAX];
int flag[MAX][MAX];
int add[4][2]= {
{1,0},{-1,0},{0,1},{0,-1}
};
void dfs(int x,int y,int key) {
flag[x][y] =1;
for(int i=0; i<4; i++) {
int x1 = x+ add[i][0];
int y1 = y+ add[i][1];
if(x1>=0 && x1<N && y1>= 0&& y1<M && map[x1][y1]==key&&!flag[x1][y1]) {
ans++;
dfs(x1,y1,key);
}
}
return;
}
int main() {
cin>>N>>M>>x>>y;
for(int i=0; i<N; i++) {
for(int j=0; j<M; j++) {
cin>>map[i][j];
}
}
ans = 1;
memset(flag,0,sizeof(flag));
dfs(x,y,map[x][y]);
memset(map,0,sizeof(map));
count=0;
for(int i=0; i<N; i++) {
for(int j=0; j<M; j++) {
if(flag[i][j] == 1) {
for(int k=0; k<4; k++) {
int x1 = i+ add[k][0];
int y1 = j+ add[k][1];
if(flag[x1][y1]==1) {
map[i][j]++;
}
}
}
}
}
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
count= count+map[i][j];
}
}
int answer = 4*ans -count;
cout<<answer<<endl;
return 0;
}