1、安装dlib
当在anaconda下使用命令 pip install dlib 安装dlib库时,提示错误安装不成功,可能是版本不匹配。在虚拟环境下查看Python版本,高版本不一定能和当前python版本兼容。可以将dlib wheel下载到本地,再手动安装。
dlib库:链接:https://pan.baidu.com/s/14FKO_wiMG85s2kgo-1aEZg 提取码:hg5m
2、标注人脸特征点
# _*_ coding:utf-8 _*_
import numpy as np
import cv2
import dlib
from PIL import Image
import os
import time
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
# dictory_name = "E:\code\celeba-1024"
dictory_name = './imgs'
if not os.path.exists('./eye'):
os.mkdir('./eye')
if not os.path.exists('./nose'):
os.mkdir('./nose')
if not os.path.exists('./mouse'):
os.mkdir('./mouse')
# 摄像头捕捉人脸图像
def cap_face():
cap = cv2.VideoCapture(0)
while (cap.isOpened()):
ret, frame = cap.read()
frame = cv2.resize(frame, (800, 650))
start = time.time()
frame = cv2.flip(frame, 1)
dets = detector(frame, 0)
for k, point in enumerate(dets):
shape = predictor(frame, point)
landmarks = np.matrix([[p.x, p.y] for p in shape.parts()])
for num in range(shape.num_parts):
cv2.circle(frame, (shape.parts()[num].x, shape.parts()[num].y), 1, (0, 255, 0), -1)
print("time ->", time.time() - start)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def landmark_face():
img = cv2.imread(dictory_name + "\\" + "000085.jpg.jpg")
# img = cv2.resize(img[:, :, ::-1],dsize=(256, 256))
# 取灰度
# img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 人脸数 rects
rects = detector(img, 0)
for k, point in enumerate(rects):
shape = predictor(img, point)
landmarks = np.matrix([[p.x, p.y] for p in shape.parts()])
for num in range(shape.num_parts):
cv2.circle(img, (shape.parts()[num].x, shape.parts()[num].y), 3, (0, 255, 0), -1)
cv2.imshow('image', img)
cv2.imwrite("./imgs/landmark_face.jpg",img)
cv2.waitKey(0)
def crop_face():
for filename in os.listdir(dictory_name):
# cv2读取图像
img = cv2.imread(dictory_name + "\\" + filename)
img = cv2.resize(img[:, :, ::-1], dsize=(256, 256))
# 取灰度
# img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 人脸数 rects
rects = detector(img, 0)
for k, point in enumerate(rects):
shape = predictor(img, point)
landmarks = np.matrix([[p.x, p.y] for p in shape.parts()])
for num in range(shape.num_parts):
cv2.circle(img, (shape.parts()[num].x, shape.parts()[num].y), 1, (0, 255, 0), -1)
# cv2.imshow('image', img)
# if len(rects) == 0:
# 眼睛+眉毛
# x_eye_left_up = 63 # 3 23
# y_eye_left_up = 95 # 18 18
# x_eye_right_down = 186 # 92 50
# y_eye_right_down = 134 # 43 43
#
# eye_box = (x_eye_left_up, y_eye_left_up, x_eye_right_down, y_eye_right_down)
# eye_crop = Image.fromarray(img).crop(eye_box)
# eye_crop.save("./eye3" + "/" + filename)
# 鼻子
# x_nose_left_up = 98
# y_nose_left_up = 130
# x_nose_right_down = 155
# y_nose_right_down = 173
#
# nose_box = (x_nose_left_up, y_nose_left_up, x_nose_right_down, y_nose_right_down)
# nose_crop = Image.fromarray(img).crop(nose_box)
# nose_crop.save("./nose" + "/" + filename)
# 嘴巴
# x_mouse_left_up = 90
# y_mouse_left_up = 173
# x_mouse_right_down = 160
# y_mouse_right_down = 210
#
# mouse_box = (x_mouse_left_up, y_mouse_left_up, x_mouse_right_down, y_mouse_right_down)
# mouse_crop = Image.fromarray(img).crop(mouse_box)
# mouse_crop.save("./mouse" + "/" + filename)
# else:
# for i in range(len(rects)): # 超过一个人脸时
# landmarks = np.matrix([[p.x, p.y] for p in predictor(img, rects[i]).parts()])
# # print(type(landmarks)) # numpy.matrix
#
# # 眼睛+眉毛
# x_left_up = landmarks[17, 0]
# y_left_up = landmarks[18, 1] - (landmarks[29, 1] - landmarks[28, 1])*2
# x_right_down = landmarks[26, 0]
# y_right_down = landmarks[28, 1] + (landmarks[29, 1] - landmarks[28, 1])
#
# # 嘴巴+鼻子
# # x_left_up = landmarks[4, 0] + (landmarks[48, 0] - landmarks[4, 0]) / 2
# # y_left_up = landmarks[29, 1]
# # x_right_down = landmarks[54, 0] + (landmarks[12, 0] - landmarks[54, 0]) / 2
# # y_right_down = landmarks[57, 1] + (landmarks[8, 1] - landmarks[57, 1]) / 2
#
# # 眼睛+眉毛+鼻子
# # x_left_up = landmarks[17, 0]
# # y_left_up = landmarks[18, 1] - (landmarks[29, 1] - landmarks[28, 1])*2
# # x_right_down = landmarks[26, 0]
# # y_right_down = landmarks[33, 1] + (landmarks[51, 1] - landmarks[33, 1]) / 2
#
# # 眼睛+眉毛+鼻子+嘴巴
# # x_left_up = landmarks[17, 0]
# # y_left_up = landmarks[18, 1] - (landmarks[29, 1] - landmarks[28, 1]) * 2
# # x_right_down = landmarks[54, 0] + (landmarks[12, 0] - landmarks[54, 0])
# # y_right_down = landmarks[57, 1] + (landmarks[8, 1] - landmarks[57, 1]) / 2
#
# box = (x_left_up, y_left_up, x_right_down, y_right_down)
# image_crop = Image.fromarray(img).crop(box)
# image_crop.save("./eye3" + "/" + filename)
if __name__ == '__main__':
# cap_face()
# crop_face()
landmark_face()
调用landmark_face(),标注图像结果如下:
3、裁剪人脸组件
crop_face()方法:采用的固定大小的尺度去裁剪人脸组件(眼睛+眉毛,鼻子,嘴巴),使用PIL保存裁剪的结果,如下图所示:
眼睛:
鼻子:
嘴巴:
PIL库中的crop方法:采用两个像素点的坐标(x,y)去裁剪组件,两个点的位置分别为矩形框的左上角和右下角。注意x的方向为向右,y为向下,图像左上角的起始坐标为(0,0)。
4、后记
思考:借助dlib库检测人脸的特征点来辅助裁剪人脸组件,存在哪些问题?
- 当人脸有姿态和遮挡时,采用固定size的尺度裁剪,无法精准裁剪。优点是裁剪后大小一致,以便网络训练,以及进一步处理。
- 根据标注的特征点,利用其中的几个特征点来crop人脸组件,特征点中位置要进行加减一定的像素,但是裁剪后的图像大小不一致。当输入给神经网络时,需要resize处理,这样的裁剪好处是能将人脸组件精确裁剪下来。
由于作者水平有限,文中若有不正确的地方,欢迎大家指出,若有任何问题,请在下方讨论。