图像语义分割

图像语义分割是图像理解的关键技术,应用于自动驾驶和无人机等场景。本文介绍了前深度学习(DL)时代,如Normalized Cut和Grab Cut算法,以及DL时代以全卷积网络(FCN)为代表的语义分割方法,包括Dilated Convolutions和条件随机场(CRF)后处理。未来研究关注弱监督和实例级别的语义分割。
摘要由CSDN通过智能技术生成

1.1图像语义分割的概念与原理

图像语义分割可以说是图像理解的基石性技术,在自动驾驶系统(具体为街景识别与理解)、无人机应用(着陆点判断)以及穿戴式设备应用中举足轻重。我们都知道,图像是由许多像素(Pixel)组成,而「语义分割」顾名思义就是将像素按照图像中表达语义含义的不同进行分组(Grouping)/分割(Segmentation)。

图像语义分割的意思就是机器自动分割并识别出图像中的内容,比如给出一个人骑摩托车的照片,机器判断后应当能够生成右侧图,红色标注为人,绿色是车(黑色表示back ground)。

2目前常用的算法

2.1前 DL 时代的语义分割

从最简单的像素级别“阈值法”(Thresholding m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值