自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 生成式模型(VAE+GAN)

1.VAE-变分自编码器1.1 交叉熵1.1.1 信息量首先是信息量。假设我们听到了两件事,分别如下:事件A:巴西队进入了2018世界杯决赛圈。事件B:中国队进入了2018世界杯决赛圈。仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。假设X是一个离散型随机变量,其取值集合为χ,概率分布函

2022-02-19 00:20:05 5545 4

原创 图像描述(图说模型)

1.RNN(循环神经网络)实际上RNN有两种神经网络模型的缩写一种是递归神经网络(Recursive Neural Network)----针对树状结构一种是循环神经网络(Recurrent Neural Network)----针对时间序列虽然这两种神经网络有着千丝万缕的联系,但是大部分情况下主要讨论的是第二种神经网络模型——循环神经网络(Recurrent Neural Network)。1.1 引入:RNN和CNN的区别从应用方面上来看,CNN用到做图像识别比较多,而RNN在做到语言处理多

2022-02-16 15:44:04 3864

原创 医疗影像分割

1.U-Net看了好几个帖子这个讲的比较贴!!介绍内容:医学影像常用图像格式:(1)DICOM(2)MHD/RAW(3)NRRD1.1 U-Net的架构U-Net的U形结构如下图所示。网络是一个经典的全卷积网络(即网络中没有全连接操作)。属于FCN的改进型。从某种意义上来说U-Net整体的流程是编码和解码(encoder-decoder)的过程,信息的压缩就是编码,信息的提取就是解码,比如图像,文本,视频的压缩与解压。网络的输入是一张 572x572 的边缘经过镜像操作的图片(input i

2022-02-11 23:12:41 5384 1

原创 图像分割-语义分割

图像分割-语义分割1.FCN1.1 CNN与FCN的比较1.2 三种上采样方法1.2.1 双线性插值上采样1.2.2 反卷积上采样1.2.3 反池化上采样1.3 FCN-跳层结构(Skip-layer)1.4 FCN架构1.5 FCN训练参数2.DeepLab V12.1 孔(Hole)算法--空洞卷积2.2CRF 条件随机场(可以对比一下graph cut)2.2.1什么是条件随机场2.2.2全连接条件随机场(FC-CRF)2.2.3 FC-CRF在Deeplab的体现3.DeepLab v23.1 AS

2022-02-09 23:16:23 5168

原创 目标检测Part2+Leetcode(733)

目标检测Part2目标检测Part2(R-FCN,Yolo)1.R-FCN1.1 检测网络的变换敏感性 和 分类网络的变换不变性1.2 设计动机(模型优势)1.3 R-FCN架构分析-算法步骤1.4 位置敏感分值图(Position-sensitive score maps)1.5 位置敏感RoI池化(Position-Sensitive Rol Pooling)1.6 R-FCN的多任务损失函数1.7 OHEM(Online Hard Example Mining)2 Yolo-V12.1 differ

2022-02-07 22:43:51 2384

原创 目标检测Part1

目标检测-Part11.R-CNN参考:(1)RCNN一些经典问题贴1.1 Module1-selective search(获取区域)介绍帖子在目标检测时,为了定位到目标的具体位置,通常会把图像分成许多子块,然后把子块作为输入,送到目标识别的模型中。在最开始的时候分子块的最直接方法叫滑动窗口法。滑动窗口的方法就是按照子块的大小在整幅图像上穷举所有子图像块。但是这种方法产生的数据量会很庞大,让人头大。所以和滑动窗口法相对的另外一类基于区域(region proposal)的方法就产生了。其中

2022-01-30 23:14:46 2527

原创 0116-图像检索

图像检索1 传统图像检索1.1 相似颜色检索相似颜色检索的过程如下图所示:1.1.1 颜色特征提取首先是将一张图像描述成一个特征向量,在颜色直方图里面可以描述成一个256维度的特征向量,也可以使用K-means对图片Lab像素值进行聚类出颜色聚类直方图,从而转换为一个少维的颜色直方图,后者常用。如果使用的特征向量,维度很大,所以会采用自编码器的机制来进行处理:那么什么是自编码器呢,自编码器是如何学习的呢?自编码器:是通过神经网络进行特征提取,提取出针对学习样本的通用特征降维方法。在神经网络

2022-01-26 00:05:07 968

原创 图像分类-神经网络结构,(leetcode704 278)

常见的图像分类的CNN网络1.AlexNet1.1AlexNet介绍AlexNet是用于图像分类的CNN模型,具体的结构如下(可以看这个帖子了解每一层的内容)4个优点:1.ReLU激活函数的引入采用修正线性单元(ReLU)的深度卷积神经网络训练时间比等价的tanh单元要快几倍。而时间开销是进行模型训练过程中很重要的考量因素之一。同时,ReLU有效防止了过拟合现象的出现。由于ReLU激活函数的高效性与实用性,使得它在深度学习框架中占有重要地位。2.层叠池化操作以往池化的大小PoolingS

2022-01-23 22:54:15 2927 1

原创 0119-CNN结构,BN,过拟合,Leetcode(125,136,141)

卷积神经网络1.卷积神经网络(CNN)1.1 基础结构2. 批标准化 (Batch Normalization)2.1 为什么需要Batch Normalization2.2 Batch Normalization是什么3.避免过适应(过拟合)3.1 什么是过适应(过拟合)3.2 method 1-早期停止训练3.3 method 2-权重衰减3.4 method 3-Dropout3.4.1 Dropout 实现方法3.4.2 Dropout如何防止过拟合1.卷积神经网络(CNN)1.1 基础结构

2022-01-19 22:51:09 1192

原创 0118-深度学习基础及一些代码实例

Grabcut的opencv实现几个关键函数的解读:(1)grabCut(img, mask, rect, bgdModel, fgdModel, iterCount, mode=None)img: 输入图像,必须是8位3通道图像,在处理过程中不会被修改mask: 掩码图像,用来确定哪些区域是背景,前景,可能是背景,可能是前景等。GCD_BGD (=0), 背景; GCD_FGD (=1),前景;GCD_PR_BGD (=2),可能是背景;GCD_PR_FGD(=3),可能是前景。rect:

2022-01-18 23:06:24 2315

原创 1-10(图像特征与描述,行列式P1,leetcode108,110)

CV基础 & Leetcode拓展知识:1. 梯度2.尺度1.图像特征与描述1.1 颜色特征1.1.1 量化颜色直方图1.1.2 聚类颜色直方图1.1.3对相似但不相同的颜色之间的相似度的处理1.1.4 颜色直方图OpenCV实现1.2 几何特征1.2.1 边缘(Edge)1.2.2 特征点/关键点1.2.2.1 Harris角点(Corner)1.2.2.2 Fast角点1.2.2.3 斑点(Blob)1.2.3 局部特征(基于关键点的特征描述子)1.2.3.1 局部特征:SIFTSIFT生成特征

2022-01-10 22:58:56 639

原创 CV基础(图像预处理)

文章目录CV基础1.课程概述1.1 计算机视觉的研究理论和应用1.2 主要研究维度Tipstensorflow基础图像预处理1.颜色空间和图片处理1.1彩色的三要素1.2.基本颜色空间(常用的四种颜色空间)1.2.1 RGB颜色空间1.2.2CMY(K)颜色空间1.2.3 HSV颜色空间1.2.4 CIE-XYZ颜色空间1.3 图片存储原理2 图像处理2.1 空间域处理-点运算(HE、CLAHE)2.1.1 特征提取方法2.1.2 HE(直方图均衡化)2.1.3 AHE(自适应直方图均衡)2.1.4 CLA

2022-01-09 00:52:00 3975

原创 Exam1-5,Leetcode(94,100,101,104)

ExamQ1:# Q1:n1 = np.zeros(10)n1[4] = 1print("*" * 100)print(n1)Q2:# Q2:np.random.seed(10)n2 = np.random.randint(10, 49, 10)print("*" * 100)print(n2)Q3# Q3:n3 = n2[::-1]print("*" * 100)print(n3)Q4# Q4np.random.seed(100)n4 = np.array

2022-01-05 23:11:53 492

原创 Leetcode刷题(69,70,83,88)

Leetcode69. Sqrt(x)(1)硬遍历出结果,时间巨慢class Solution: def mySqrt(self, x: int) -> int: if x == 0: return 0 i=1 while x/i >= i: i+=1 return i-1 (2)用2分查找法去寻找,时间复杂度低很多class Solution: def m

2022-01-03 23:10:24 223

原创 20220102(多元函数,pandas-时间序列,leetcode)

数学基础篇(多元微分学)1 欧式空间关于内积的计算公式2.点列极限与开集闭集2.1 点列极限(收敛数列的概念类似)(2)聚点和孤立点如下图:设点集D为点集E、点A、点B之和。(D=E+A+B)存在点A的一个邻域,这个邻域与集合D 只有点A这一个集合,即 点A称为集合D的孤立点点B同理也是集合D的孤立点2.2 开集和闭集2.2.1 内部,外部和边界例子:2.2.4闭集和开集(1)开集(2)闭集Rn和空集是即开又闭的。(3)导集闭包:最小的可以包住开集集合E的闭集3

2022-01-02 21:33:33 987

原创 2022-1-1(定积分part2,pandas补充,leetcode35.53.58)

数学基础(定积分2)1.1 奇偶函数和周期函数的定积分(1)区间对称的偶函数定积分可以归一侧区间对称的奇函数定积分为0(2)例子1.2曲线的求长1.2.1 参数方程的曲线长例子:1.2.2 f(x)函数的曲线求长1.2.3极坐标曲线求长分形(科克曲线)ref:http://www.math168.com/sxxs/566.htm1.3 旋转体的体积例子:1.4 旋转体的侧面积数据分析篇(pandas)1.知识回顾结合pandas和matplotlib

2022-01-01 22:36:35 422

原创 1230(pandas的Series和DataFrame ,leetcode 27,28)

python-数据分析篇1 numpy的一些补充1.1 numpy的随机函数1.2 numpy数组的复制2 Pandas库学习(处理非数值型数据)numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我们处理其他类型的数据(还有字符串,还有时间序列等)2.1Series的生成import stringimport pandas as pdt1 = pd.Series([1, 2, 31, 12, 3, 4])print("t1 type={

2021-12-30 22:46:36 680

原创 1229(定积分+numpy)

数学基础篇(定积分)1 定积分的概念:1.1 定积分的定义注意:定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式定积分的定义如下:定积分的本质是:求面积!1.2 可积性可积函数的函数可积的充分条件:1、函数有界;2、在该区间上连续;3、有有限个间断点。2.定积分的性质2.1 常见性质(1)原函数不等式对相同闭区间定积分成立(2)常数可移出(3)加减拆分(4)双

2021-12-29 23:10:09 1283

原创 1228(不定积分,matplotlib,leetcode21,26)

数学基础篇(不定积分)1.不定积分1.1不定积分的定义不定积分就是求导的逆运算,但是不定积分F(x)是一个代表元,他的导数是f(x),但他不唯一。1.2 初等函数的不定积分的基本公式例子:1.3 第一换元法例子:1.4 第二换元法:例子:1.5 分部积分法例子:1.6 有理式积分把一个真分式拆分成多个部分分式,以下式一些部分分式的结构然后几种部分分式的不定积分如下:例子:1.7三角函数有理式用万能替换去求解:例子:1.8常用不定积分注意:并不

2021-12-28 23:21:27 706

原创 1227(matplotlib折线图,leetcode13,14,20)

数据分析篇1 数据分析和环境介绍1.1什么是数据分析数据分析:是用适当的方法对收集来的大量数据进行分析,帮助人们作出判断,以便采取适当行动1.2 jupyter notebook一些简单操作:cmd-jupyter notebooknew python3文件2 Matplotlib2.1 Matplotlib介绍最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建2.2 Matplotlib基础操作(折线图为例)首先绘制简单无信息折线

2021-12-27 21:09:25 511

原创 1226(数据结构Exam+leetcode)

Exam AnswerQ1:"""1-使用Python实现冒泡排序,并分析时间复杂度(实现升序排列,从小到大)"""def bubble_sort(items): len_items = len(items) flag = True for i in range(0, len_items): for j in range(0, len_items - i - 1): if items[j] > items[j + 1]:

2021-12-26 20:38:15 242

原创 1225(微分中值定理,导数应用,二叉树)

数学基础篇1 微分中值定理1.1 罗尔中值定理罗尔中值定理:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。证明前:基于一个最大值最小值存在定理:闭区间连续函数一定存在最大值和最小值证明:证明:因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:若 M=m,则函数 f(x) 在闭区间

2021-12-25 23:31:50 852

原创 1224学习笔记

Python数据结构篇(排序算法2)1希尔排序1.1 希尔排序的原理根据步长gap的不同将数列分成n/gap个子序列,然后把子序列进行插入排序,然后不断缩小gap,直到gap=1.初始gap=n/2然后每次gap/2直到=1gap的取值和缩小方法可以自定义!!!1.2 希尔排序实现:实现1:完全按照希尔的思路来做,先确定gap 然后分子序列,然后插入排序!!(4个循环)但是最坏时间复杂度是O(n2)# 比较拙略的方法,但是也是用希尔排序实现了def shell_sort_my_bad(

2021-12-24 22:51:04 872

原创 1223学习笔记

数学基础篇(微分)1 微分1.1 微分定义同时微分可以理解为将导数转为解释图片:注意:其中????????与函数增量∆????之差就是????(∆????)1.2 微分和导数的区别首先确认一个性质:函数????(????)在点????0处可微的充分必要条件是????(????)在????0处可导两者的概念很相似:但是在理解上可以把1.导数理解为是描述函数变化的快慢,导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。2.微分理解为是描述函数变化的程

2021-12-23 20:47:11 757

原创 1222学习笔记

数学基础篇(导数)1.导数的定义实际上上导数的物理意义是对于变化率的一种描述!!!然后(1)左导数和右导数也可以通过左右极限被定义(2)点点都可以导的话 可以产生一个导函数注意:2.导数的计算方式2.1定义法:直接求极限例子1(常数函数):例子2:例子3:例子4:2.2 导数的四则运算导数的四则运算是成立的例子:2.3反函数求导即反函数的导数是原函数导数的倒数例子:2.4 复合函数求导例子:2.5 隐函数的导数法则隐函数的定义:只要把两边求导得到

2021-12-22 22:24:35 426

原创 1221学习笔记

数学基础篇(函数极限与连续函数)1.函数极限1.1 函数极限的定义在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在一变化过程中的函数的极限1.2 单侧极限右极限的定义:其中用数轴的方式去表示,就是当x处于(a,a+q)的区间时,f(x)会处在(????-????,????+????)这个带型区域内。反之左极限的定义是:当就是当x处于(a-q,a)的区间时,f(x)会处在(????-????,????+????)这个带型区域内,只是关于x的取值有一定改

2021-12-21 23:26:17 1878

原创 1220学习笔记

数学基础篇(有关数列)1.序列1.1 序列两种表达形式(1)通项表示(2)连续表示1.2 收敛和发散的概念学会用????−????语言描述收敛和发散(非常重要,属于基础推理)收敛的描述:有极限(极限不为无穷)就是收敛用????−????语言描述为:收敛的几何意义:∀????,在????的????邻域????(????,????)包含了????????自某项之后的所有项∀????,在????的????邻域????????,????之外只有????????的有限项发散的描述:没有极限

2021-12-21 00:56:44 440

原创 20211219-学习笔记

12月19日学习笔记数学基础篇笔记(集合到函数)集合基础知识实数集函数和映射Python数据结构篇笔记算法的特性时间复杂度与“大O记法”---反应算法的效率数据结构数学基础篇笔记(集合到函数)集合基础知识(1)真子集和子集的区分方式是是否包含本身。集合本身不是集合的真子集但是可以是子集(2)交集,并集,差集的操作(3)集合**基数(势)**可以认为是集合的内元素的个数(4)常见集合有:自然数ℕ、整数ℤ、有理数ℚ、实数ℝ,复数ℂ实数集(1)区间分4类:(a,b) [a,b] (a,b] [a

2021-12-19 22:34:19 903

原创 VisionPro 常用工具介绍

VisionPro 常用工具介绍所有工具大纲VisionPro 基础工具CogImageFileTool工具CogPMAlignTool工具CogCNLSearchTool工具(也是一种特征匹配工具)CogBlobTool工具CogCaliperTool工具CogPMAlignMultiTool工具所有工具大纲VisionPro 基础工具CogImageFileTool工具CogImageFileTool工具可以用来将单张图片或idb格式的图片数据库读入内存,如图所示,可以作为没有相机时的其他工具

2021-07-30 17:37:41 36664 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除