tensorflow的使用进阶

Note: When is_training is True the moving_mean and moving_variance need to be updated, by default the update_ops are placed in tf.GraphKeys.UPDATE_OPS so they need to be added as a dependency to the train_op, example:
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimize_op = optimizer.minimize(optimize_target, global_step=self.global_step)

moving_mean and moving_variance 在做 val 和 test 时都需要,所以尽管训练时用到的是每个 batch 的 mean 和 variance,没有用到 moving_mean and moving_variance ,在训练时仍需要被计算。使用control_dependencies语句的原因是在sess.run中可以不写update_ops,只需写sesss.run(optimize_op), updates_op就会被被调用。

2,在使用 batch_norm 的偏置时,卷积可以不使用 bias_add

3,在使用 saver = tf.train.Saver() 必须在图构建完成之后申明,否则将不能保存模型参数。即应写为:

Mymodel()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())

而不是:

saver = tf.train.Saver()
Mymodel()
sess = tf.Session()
sess.run(tf.global_variables_initializer())

博主在自己训练 u-net 时,采用了第二种方法,导致在使用训练的 u-net 做测试时会出现参数没有初始化的报错信息。

4, tensorflow 中 Tensor 与 Variable 的区别: Tensor 不需要初始化,Variable需要初始化。区分两者的方法:Variable 会通过tf.Variabletf.get_variable来显式定义。

A = tf.zeros([10])   # A is a Tensor
B = tf.Variable([111, 11, 11]) # B is a Variable
sess.run(A) # OK. Will return the values in A
sess.run(B) # Error.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值