LeetCode 375 猜数字大小 II

猜数字大小II

1. 题目

我们正在玩一个猜数游戏,游戏规则如下:

我从 1 到 n 之间选择一个数字,你来猜我选了哪个数字。

每次你猜错了,我都会告诉你,我选的数字比你的大了或者小了。

然而,当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。直到你猜到我选的数字,你才算赢得了这个游戏。

示例:

n = 10, 我选择了8.

第一轮: 你猜我选择的数字是5,我会告诉你,我的数字更大一些,然后你需要支付5块。
第二轮: 你猜是7,我告诉你,我的数字更大一些,你支付7块。
第三轮: 你猜是9,我告诉你,我的数字更小一些,你支付9块。

游戏结束。8 就是我选的数字。

你最终要支付 5 + 7 + 9 = 21 块钱。
给定 n ≥ 1,计算你至少需要拥有多少现金才能确保你能赢得这个游戏。

2. 题目分析

乍一眼看上去,很像二分的查找方法,但是二分却不能保证就一定是最小的那个方案。所以我们采用穷举法(递归法)来分析。

2.1 确定状态函数

首先,可以明确这个问题和区间是有关的,直接定义,状态函数 d p [ i ] [ j ] dp[i][j] dp[i][j]区间 [ i , j ] [i,j] [i,j]之间消耗的确保获胜最小现金。

2.2 状态转移方程

要求得这个现金,我们需要按照最坏情况考虑,就是我们下一次猜测是错误的情况下,需要的资金,把所有猜测错误的情况列举出来可以有
m a x ( d p [ i ] [ k − 1 ] , d p [ k + 1 ] [ j ] ) + k k ∈ [ i + 1 , j − 1 ] \begin{aligned} max(dp[i][k-1], dp[k+1][j]) + k & & k\in[i+1,j-1] \end{aligned} max(dp[i][k1],dp[k+1][j])+kk[i+1,j1]
这里用max是因为给出提示后,只会选择任一边,为了保险起见,就选择最大的部分。

在这些猜错的最坏情况下,我们找到一个最小现金,意味着我们在面对这个未知区间时,要盲猜一个效率最高的数,这个数在列举的k之中,这里用min找到最小值。
d p [ i ] [ j ] = min ⁡ k ( m a x ( d p [ i ] [ k − 1 ] , d p [ k + 1 ] [ j ] ) + k ) k ∈ [ i + 1 , j − 1 ] \begin{aligned} dp[i][j] =\min_k(max(dp[i][k-1], dp[k+1][j]) + k) & & k\in[i+1,j-1] \end{aligned} dp[i][j]=kmin(max(dp[i][k1],dp[k+1][j])+k)k[i+1,j1]
到这里我们已经把状态转移方程给弄出来。

2.3 状态初始化

首先我们可以确定 d p [ i ] [ i ] = 0 , d p [ 0 ] [ i ] = 0 , d p [ n ] [ 0 ] = 0 dp[i][i]=0,dp[0][i]=0,dp[n][0]=0 dp[i][i]=0,dp[0][i]=0,dp[n][0]=0,因为当相等的时候不需要猜,涉及0的时候在题目中不需要考虑。那么剩下的值该如何进行设置?

观察方程,最终列举的时候取得是最小值,可以把 d p [ i ] [ j ] dp[i][j] dp[i][j]的初始值设置为正无穷。

2.4 迭代顺序

首先可以确定,
i ≤ k − 1 < k + 1 ≤ j i\leq k-1 < k+1\leq j ik1<k+1j
这里有个矛盾就是i,j之间的差是可以为1,而k+1与k-1的差为2,这点在循环的时候需要注意,即最后k的取值需要把边界值i,j进行考虑。

其次,回顾转移方程
d p [ i ] [ j ] = min ⁡ k ( m a x ( d p [ i ] [ k − 1 ] , d p [ k + 1 ] [ j ] ) + k ) k ∈ [ i + 1 , j − 1 ] \begin{aligned} dp[i][j] =\min_k(max(dp[i][k-1], dp[k+1][j]) + k) & & k\in[i+1,j-1] \end{aligned} dp[i][j]=kmin(max(dp[i][k1],dp[k+1][j])+k)k[i+1,j1]
当需要更新的 d p [ i ] [ j ] dp[i][j] dp[i][j]时,需要用到左后方的dp,所以更新应该是从左到右,从下到上。

3.代码

class Solution {
public:
    int getMoneyAmount(int n) {
        int** dp = new int*[n+1];
        
        for(int i=0;i<=n;i++){
            dp[i] = new int[n+1];
        }

        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                dp[i][j] = 1000;
            }
        }

        for(int i=0;i<=n;i++){
            dp[0][i] = 0;
        }

        for(int i=0;i<=n;i++){
            dp[i][0] = 0;
        }
        for(int i=0;i<=n;i++){
            dp[i][i] = 0;
        }

        for(int j=2;j<=n;j++){
            for(int i=j-1;i>0;i--){
                for(int k=i+1;k<j ;k++){
                    dp[i][j] = min(max(dp[i][k-1], dp[k+1][j])+k, dp[i][j]);
                }
                dp[i][j] = min(dp[i][j], i+dp[i+1][j]);
                dp[i][j] = min(dp[i][j], j+dp[i][j-1]);
                
            }
        }

        return dp[1][n];

    }
};
```
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值