Python tuple元组详解

Python tuple元组详解

        元组(tuple)是 Python 中另一个重要的序列结构,和列表类似,元组也是由一系列按特定顺序排序的元素组成。

元组和列表(list)的不同之处在于:

  • 列表的元素是可以更改的,包括修改元素值,删除和插入元素,所以列表是可变序列;
  • 而元组一旦被创建,它的元素就不可更改了,所以元组是不可变序列。

        元组也可以看做是不可变的列表,通常情况下,元组用于保存无需修改的内容。

从形式上看,元组的所有元素都放在一对小括号( )中,相邻元素之间用逗号,分隔,如下所示:

(element1, element2, ... , elementn)

        其中 element1~elementn 表示元组中的各个元素,个数没有限制,只要是 Python 支持的数据类型就可以。

        从存储内容上看,元组可以存储整数、实数、字符串、列表、元组等任何类型的数据,并且在同一个元组中,元素的类型可以不同,例如:

("c.biancheng.net", 1, [2,'a'], ("abc",3.0))

        在这个元组中,有多种类型的数据,包括整形、字符串、列表、元组。

        另外,我们都知道,列表的数据类型是 list,那么元组的数据类型是什么呢?我们不妨通过 type() 函数来查看一下:

>>> type( ("c.biancheng.net",1,[2,'a'],("abc",3.0)) )
<class 'tuple'>

        可以看到,元组是 tuple 类型,这也是很多教程中用 tuple 指代元组的原因。

Python创建元组

        Python 提供了两种创建元组的方法,下面一一进行介绍。

1) 使用 ( ) 直接创建

        通过( )创建元组后,一般使用=将它赋值给某个变量,具体格式为:

tuplename = (element1, element2, ..., elementn)

        其中,tuplename 表示变量名,element1 ~ elementn 表示元组的元素。

例如,下面的元组都是合法的:

num = (7, 14, 21, 28, 35)
course = ("Python教程", "http://c.biancheng.net/python/")
abc = ( "Python", 19, [1,2], ('c',2.0) )

        在 Python 中,元组通常都是使用一对小括号将所有元素包围起来的,但小括号不是必须的,只要将各元素用逗号隔开,Python 就会将其视为元组,请看下面的例子:

course = "Python教程", "http://c.biancheng.net/python/"
print(course)

运行结果为:

('Python教程', 'http://c.biancheng.net/python/')

        需要注意的一点是,当创建的元组中只有一个字符串类型的元素时,该元素后面必须要加一个逗号,,否则 Python 解释器会将它视为字符串。请看下面的代码:

#最后加上逗号
a =("http://c.biancheng.net/cplus/",)
print(type(a))
print(a)
#最后不加逗号
b = ("http://c.biancheng.net/socket/")
print(type(b))
print(b)

运行结果为:

<class 'tuple'>
('http://c.biancheng.net/cplus/',)
<class 'str'>
http://c.biancheng.net/socket/

你看,只有变量 a 才是元组,后面的变量 b 是一个字符串。

2) 使用tuple()函数创建元组

        除了使用( )创建元组外,Python 还提供了一个内置的函数 tuple(),用来将其它数据类型转换为元组类型。

tuple() 的语法格式如下:

tuple(data)

其中,data 表示可以转化为元组的数据,包括字符串、元组、range 对象等。

tuple() 使用示例:

#将字符串转换成元组
tup1 = tuple("hello")
print(tup1)
#将列表转换成元组
list1 = ['Python', 'Java', 'C++', 'JavaScript']
tup2 = tuple(list1)
print(tup2)
#将字典转换成元组
dict1 = {'a':100, 'b':42, 'c':9}
tup3 = tuple(dict1)
print(tup3)
#将区间转换成元组
range1 = range(1, 6)
tup4 = tuple(range1)
print(tup4)
#创建空元组
print(tuple())

运行结果为:

('h', 'e', 'l', 'l', 'o')
('Python', 'Java', 'C++', 'JavaScript')
('a', 'b', 'c')
(1, 2, 3, 4, 5)
()

Python访问元组元素

        和列表一样,我们可以使用索引(Index)访问元组中的某个元素(得到的是一个元素的值),也可以使用切片访问元组中的一组元素(得到的是一个新的子元组)。

使用索引访问元组元素的格式为:

tuplename[i]

        其中,tuplename 表示元组名字,i 表示索引值。元组的索引可以是正数,也可以是负数。

使用切片访问元组元素的格式为:

tuplename[start : end : step]

        其中,start 表示起始索引,end 表示结束索引,step 表示步长。

以上两种方式我们已在《Python序列》中进行了讲解,这里就不再赘述了,仅作示例演示,请看下面代码:

url = tuple("http://c.biancheng.net/shell/")
#使用索引访问元组中的某个元素
print(url[3])  #使用正数索引
print(url[-4])  #使用负数索引
#使用切片访问元组中的一组元素
print(url[9: 18])  #使用正数切片
print(url[9: 18: 3])  #指定步长
print(url[-6: -1])  #使用负数切片

运行结果:

p
e
('b', 'i', 'a', 'n', 'c', 'h', 'e', 'n', 'g')
('b', 'n', 'e')
('s', 'h', 'e', 'l', 'l')

Python修改元组

        前面我们已经说过,元组是不可变序列,元组中的元素不能被修改,所以我们只能创建一个新的元组去替代旧的元组。

例如,对元组变量进行重新赋值:

tup = (100, 0.5, -36, 73)
print(tup)
#对元组进行重新赋值
tup = ('Shell脚本',"http://c.biancheng.net/shell/")
print(tup)

运行结果为:

(100, 0.5, -36, 73)
('Shell脚本', 'http://c.biancheng.net/shell/')

另外,还可以通过连接多个元组(使用+可以拼接元组)的方式向元组中添加新元素,例如:

tup1 = (100, 0.5, -36, 73)
tup2 = (3+12j, -54.6, 99)
print(tup1+tup2)
print(tup1)
print(tup2)

运行结果为:

(100, 0.5, -36, 73, (3+12j), -54.6, 99)
(100, 0.5, -36, 73)
((3+12j), -54.6, 99)

你看,使用+拼接元组以后,tup1 和 tup2 的内容没法发生改变,这说明生成的是一个新的元组。

Python删除元组

        当创建的元组不再使用时,可以通过 del 关键字将其删除,例如:

tup = ('Java教程',"http://c.biancheng.net/java/")
print(tup)
del tup
print(tup)

运行结果为:

('Java教程', 'http://c.biancheng.net/java/')
Traceback (most recent call last):
    File "C:\Users\mozhiyan\Desktop\demo.py", line 4, in <module>
        print(tup)
NameError: name 'tup' is not defined

Python 自带垃圾回收功能,会自动销毁不用的元组,所以一般不需要通过 del 来手动删除。

Python元组和列表的区别

        元组和列表同属序列类型,且都可以按照特定顺序存放一组数据,数据类型不受限制,只要是 Python 支持的数据类型就可以。那么,元组和列表有哪些区别呢?

        元组和列表最大的区别就是,列表中的元素可以进行任意修改,就好比是用铅笔在纸上写的字,写错了还可以擦除重写;而元组中的元素无法修改,除非将元组整体替换掉,就好比是用圆珠笔写的字,写了就擦不掉了,除非换一张纸。

        可以理解为,tuple 元组是一个只读版本的 list 列表。

        需要注意的是,这样的差异势必会影响两者的存储方式,我们来直接看下面的例子:

>>> listdemo = []
>>> listdemo.__sizeof__()
40
>>> tupleDemo = ()
>>> tupleDemo.__sizeof__()
24

        可以看到,对于列表和元组来说,虽然它们都是空的,但元组却比列表少占用 16 个字节,这是为什么呢?
        事实上,就是由于列表是动态的,它需要存储指针来指向对应的元素(占用 8 个字节)。另外,由于列表中元素可变,所以需要额外存储已经分配的长度大小(占用 8 个字节)。但是对于元组,情况就不同了,元组长度大小固定,且存储元素不可变,所以存储空间也是固定的。

        读者可能会问题,既然列表这么强大,还要元组这种序列类型干什么?

        通过对比列表和元组存储方式的差异,我们可以引申出这样的结论,即元组要比列表更加轻量级,所以从总体上来说,元组的性能速度要优于列表。

        另外,Python 会在后台,对静态数据做一些资源缓存。通常来说,因为垃圾回收机制的存在,如果一些变量不被使用了,Python 就会回收它们所占用的内存,返还给操作系统,以便其他变量或其他应用使用。

        但是对于一些静态变量(比如元组),如果它不被使用并且占用空间不大时,Python 会暂时缓存这部分内存。这样的话,当下次再创建同样大小的元组时,Python 就可以不用再向操作系统发出请求去寻找内存,而是可以直接分配之前缓存的内存空间,这样就能大大加快程序的运行速度。

        下面的例子,是计算初始化一个相同元素的列表和元组分别所需的时间。我们可以看到,元组的初始化速度要比列表快 5 倍。

C:\Users\mengma>python -m timeit 'x=(1,2,3,4,5,6)'
20000000 loops, best of 5: 9.97 nsec per loop
C:\Users\mengma>python -m timeit 'x=[1,2,3,4,5,6]'
5000000 loops, best of 5: 50.1 nsec per loop

        当然,如果你想要增加、删减或者改变元素,那么列表显然更优。因为对于元组来说,必须得通过新建一个元组来完成。

总的来说,元组确实没有列表那么多功能,但是元组依旧是很重要的序列类型之一,元组的不可替代性体现在以下这些场景中:

  1. 元组作为很多内置函数和序列类型方法的返回值存在,也就是说,在使用某些函数或者方法时,它的返回值会元组类型,因此你必须对元组进行处理。
  2. 元组比列表的访问和处理速度更快,因此,当需要对指定元素进行访问,且不涉及修改元素的操作时,建议使用元组。
  3. 元组可以在映射(和集合的成员)中当做“键”使用,而列表不行。这会在后续章节中作详解介绍。

Python列表和元组的底层实现

        有关列表(list)和元组(tuple)的底层实现,本节分别从它们的源码来进行分析。

首先来分析 list 列表,它的具体结构如下所示:

typedef struct {
    PyObject_VAR_HEAD
    /* Vector of pointers to list elements.  list[0] is ob_item[0], etc. */
    PyObject **ob_item;
    /* ob_item contains space for 'allocated' elements.  The number
     * currently in use is ob_size.
     * Invariants:
     *     0 <= ob_size <= allocated
     *     len(list) == ob_size
     *     ob_item == NULL implies ob_size == allocated == 0
     * list.sort() temporarily sets allocated to -1 to detect mutations.
     *
     * Items must normally not be NULL, except during construction when
     * the list is not yet visible outside the function that builds it.
     */
    Py_ssize_t allocated;
} PyListObject;

        list 本质上是一个长度可变的连续数组。其中 ob_item 是一个指针列表,里边的每一个指针都指向列表中的元素,而 allocated 则用于存储该列表目前已被分配的空间大小。

        需要注意的是,allocated 和列表的实际空间大小不同,列表实际空间大小,指的是 len(list) 返回的结果,也就是上边代码中注释中的 ob_size,表示该列表总共存储了多少个元素。而在实际情况中,为了优化存储结构,避免每次增加元素都要重新分配内存,列表预分配的空间 allocated 往往会大于 ob_size。

        因此 allocated 和 ob_size 的关系是:allocated >= len(list) = ob_size >= 0

        如果当前列表分配的空间已满(即 allocated == len(list)),则会向系统请求更大的内存空间,并把原来的元素全部拷贝过去。

接下来再分析元组,如下所示为 Python 3.7 tuple 元组的具体结构:

typedef struct {
    PyObject_VAR_HEAD
    PyObject *ob_item[1];
    /* ob_item contains space for 'ob_size' elements.
     * Items must normally not be NULL, except during construction when
     * the tuple is not yet visible outside the function that builds it.
     */
} PyTupleObject;

        tuple 和 list 相似,本质也是一个数组,但是空间大小固定。不同于一般数组,Python 的 tuple 做了许多优化,来提升在程序中的效率。

        举个例子,为了提高效率,避免频繁的调用系统函数 free 和 malloc 向操作系统申请和释放空间,tuple 源文件中定义了一个 free_list: 

static PyTupleObject *free_list[PyTuple_MAXSAVESIZE];

        所有申请过的,小于一定大小的元组,在释放的时候会被放进这个 free_list 中以供下次使用。也就是说,如果以后需要再去创建同样的 tuple,Python 就可以直接从缓存中载入。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值