线段树讲解(小进阶)

目录

前言

一、线段树知识回顾

线段树区间加减

区间修改维护:

区间修改的操作:

区间修改update:

线段树的区间查询

区间查询:

区间查询的操作:

递归查询过程:

区间查询query:

代码:

二、线段树的区间修改---乘上一个数’x'

build

区间修改

update

mulpr_update

push_up

代码:

push_down

左:

右:

代码:

区间查询query

代码:

三、例题

例题:P3373 【模板】线段树 2 - 洛谷

​编辑

完整代码:

总结


前言

本篇文章主要是根据P3373 【模板】线段树 2 - 洛谷对线段树进行进一步的讲解


一、线段树知识回顾

我们在进一步学习前,先来看一下前置知识

开一个build函数建树,具体操作如下:

1.定义数组:首先,需要定义一个大小为 4n 的数组,其中 n 是线段树的叶子节点数量。这个数组将用于存储线段树的节点信息。

2.构建线段树:一般将线段树按照完全二叉树的形式存储在数组中。假设根节点在数组中的索引是 1,那么对于节点 i,其左子节点为 2i,右子节点为 2i + 1。

3.存储节点信息:每个节点需要保存代表的区间范围和相应的信息,比如区间的最大值、最小值、和等等。在数组中,可以按照某种顺序依次存储这些信息,以便后续的查询和更新操作。

4.建立线段树:通过递归或迭代的方式构建线段树。一般会从叶子节点开始向上构建,通过合并子节点的信息得到父节点的信息,直至构建完整的线段树。

5.查询和更新:通过线段树的结构和数组存储,可以实现高效的区间查询和更新操作。比如,对于查询一个区间的最大值,可以通过递归向下查询到包含目标区间的节点,并根据存储的信息计算出结果。

6.记得注意边界情况:在实现线段树时,需要考虑树的边界情况,比如树的根节点索引是 1,叶子节点索引从 n+1 开始等,以确保正确地访问和操作节点。

// 建树函数
void build(LL l, LL r, LL fa) {
    if (l == r) { // 如果区间只有一个元素
        t[fa] = a[l] % m; // 直接赋值
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    build(l, mid, fa << 1); // 递归构建左子树
    build(mid + 1, r, fa << 1 | 1); // 递归构建右子树
    push_up(fa); // 更新父节点
}

线段树区间加减

区间修改维护:

1.需要修改线段树中某个特定区间的值时,可以通过递归的方式向下更新区间。
2.如果要修改的区间与当前节点表示的区间没有交集,则无需修改该节点。
3.如果要修改的区间完全包含当前节点的区间,则直接更新当前节点的信息,并将修改操作下传给子节点。
4.如果要修改的区间与当前节点的区间部分相交,则需要先将当前节点的信息更新,然后将修改操作同时下传给左右子节点。


区间修改的操作:


1.区间修改的操作通常包括加法、减法、赋值等。
2.当需要对区间内的每个元素进行相同的修改时,可以利用线段树的特性进行高效操作。
3.在修改区间时,需要根据当前节点的区间范围、待修改区间和修改方式来确定如何操作当前节点和其子节点。


递归更新过程:


从线段树的根节点开始递归向下更新,直到找到包含待修改区间的叶子节点。
在递归过程中根据节点的区间范围和待修改区间的关系,决定如何更新节点的信息并向下传递修改操作。
       此外,对于区间操作,我们考虑引入一个名叫“ lazy tag ”(懒标记)的东西——之所以称其“lazy”,是因为原本区间修改需要通过先改变叶子节点的值,然后不断地向上递归修改祖先节点直至到达根节点,时间复杂度最高可以到达 O(nlogn) 的级别。但当我们引入了懒标记之后,区间更新的期望复杂度就降到了 O(logn) 的级别且甚至会更低。

因此,我们再弄一个tag数组,大小也是4*N

区间修改update:

void psuh_up(LL fa) {
	t[fa] = t[fa << 1] + t[fa << 1 | 1];//向上不断维护父节点
}
void push_down(LL l,LL r,LL fa) {
	LL mid = (l + r) >> 1;
	t[fa << 1] += tag[fa] * (mid - l + 1);
	tag[fa << 1] += tag[fa];
	t[fa << 1|1] += tag[fa] * (r-mid);
	tag[fa << 1|1] += tag[fa];
	tag[fa] = 0;// //每次将懒惰标识下放到两个儿子节点,自身置为0,以此不断向下传递 
}
void update(LL ql, LL qr, LL l, LL r, LL k, LL fa) {
	
	if (ql <= l && qr >= r) //如果区间被包含,直接返回该节点的懒惰标识
	{
		t[fa] +=k * (r - l + 1);
		tag[fa] += k;
		return;
	}
	LL mid = (l + r) >> 1;
	push_down(l, r, fa);//下放懒惰标识
	if (ql <= mid)update(ql, qr, l, mid,k, fa << 1);//朝左边下放
	if (qr > mid)update(ql, qr, mid + 1, r,k, fa << 1 | 1);//右边
	psuh_up(fa);//再将修改后的值向上返回,维护父节点
}

我们这一期会对update和push_down进行更改

线段树的区间查询

  1. 区间查询

    • 当需要查询线段树中某个特定区间的信息时,可以通过递归的方式向下查询区间。
    • 如果要查询的区间与当前节点表示的区间没有交集,则无需查询该节点,直接返回默认值(如0或无穷大)。
    • 如果要查询的区间完全包含当前节点的区间,则直接返回该节点存储的信息。
    • 如果要查询的区间与当前节点的区间部分相交,则需要同时查询左右子节点,并根据查询结果合并得到最终结果。
  2. 区间查询的操作

    • 区间查询的操作通常包括求和、求最大值、求最小值等。
    • 在查询区间时,需要根据当前节点的区间范围、待查询区间和查询方式来确定如何操作当前节点和其子节点。
  3. 递归查询过程

    • 从线段树的根节点开始递归向下查询,直到找到包含待查询区间的叶子节点。
    • 在递归过程中根据节点的区间范围和待查询区间的关系,决定如何查询节点的信息并向下传递查询操作。
    • 最终将所有查询结果合并得到最终的区间查询结果。

      通过以上方法,可以实现对线段树中特定区间的查询操作。线段树区间查询是线段树的一个重要功能,能够快速有效地获取区间内的信息,提高了区间查询的效率。

区间查询query:

LL query(LL ql, LL qr, LL l, LL r, LL fa) {
	LL ret = 0;
	if (ql <= l && qr >= r) 如果区间被包含,直接返回该节点的懒惰标识
	{
		return t[fa];
	}
	LL mid = (l + r) >> 1;
	push_down(l, r, fa);//没有被包含,下放任务
	if (ql <= mid)ret += query(ql, qr, l, mid, fa << 1);
	if (qr > mid)ret += query(ql, qr, mid + 1, r, fa << 1|1);
	//在查询范围的左区间和右区间的值相加并返回
	return ret;
}

代码:

#include<iostream>
using namespace std;
const int N = 1e5 + 10;
typedef long long LL;
LL n, m, t[N * 4], tag[N * 4], a[N];
void psuh_up(LL fa) {
	t[fa] = t[fa << 1] + t[fa << 1 | 1];//向上不断维护父节点
}
void push_down(LL l,LL r,LL fa) {
	LL mid = (l + r) >> 1;
	t[fa << 1] += tag[fa] * (mid - l + 1);
	tag[fa << 1] += tag[fa];
	t[fa << 1|1] += tag[fa] * (r-mid);
	tag[fa << 1|1] += tag[fa];
	tag[fa] = 0;// //每次将懒惰标识下放到两个儿子节点,自身置为0,以此不断向下传递 
}
LL query(LL ql, LL qr, LL l, LL r, LL fa) {
	LL ret = 0;
	if (ql <= l && qr >= r) 如果区间被包含,直接返回该节点的懒惰标识
	{
		return t[fa];
	}
	LL mid = (l + r) >> 1;
	push_down(l, r, fa);//没有被包含,下放任务
	if (ql <= mid)ret += query(ql, qr, l, mid, fa << 1);
	if (qr > mid)ret += query(ql, qr, mid + 1, r, fa << 1|1);
	//在查询范围的左区间和右区间的值相加并返回
	return ret;
}
void update(LL ql, LL qr, LL l, LL r, LL k, LL fa) {
	
	if (ql <= l && qr >= r) //如果区间被包含,更新懒惰标识并返回
	{
		t[fa] +=k * (r - l + 1);
		tag[fa] += k;
		return;
	}
	LL mid = (l + r) >> 1;
	push_down(l, r, fa);//下放懒惰标识
	if (ql <= mid)update(ql, qr, l, mid,k, fa << 1);//朝左边下放
	if (qr > mid)update(ql, qr, mid + 1, r,k, fa << 1 | 1);//右边
	psuh_up(fa);//再将修改后的值向上返回,维护父节点
}
void build(LL l, LL r, LL fa) {
	if (l == r) // //如果左右区间相同,那么必然是叶子节,只有叶子节点是被真实赋值的
	{
		t[fa] = a[l];
		return;
	}
	LL mid = (l + r) >> 1;

	build(l, mid, fa << 1);
	build(mid + 1, r, fa << 1 | 1);
	//使用二分来优化
	psuh_up(fa);//此处由于我们是要通过子节点来维护父节点,所以push_up的位置应当是在回溯时将子节点的值取和交给父节点
}
int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++)cin >> a[i];
	build(1, n, 1);
	while (m--) {
		int op; cin >> op;
		if (op == 1) {
			LL x, y, k; cin >> x >> y >> k;
			update(x, y, 1, n, k, 1);
		}
		else if(op==2){
			LL x, y;
			cin >> x >> y;
			cout << query(x, y, 1, n, 1) << endl;
		}
	}
	return 0;
}

二、线段树的区间修改---乘上一个数’x'

老样子,先看题目

根据题目意思先建树

build:

代码:

// 建树函数
void build(LL l, LL r, LL fa) {
    if (l == r) { // 如果区间只有一个元素
        t[fa] = a[l] % m; // 直接赋值
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    build(l, mid, fa << 1); // 递归构建左子树
    build(mid + 1, r, fa << 1 | 1); // 递归构建右子树
    push_up(fa); // 更新父节点
}

因为题目增加了一个区间乘一个数,所以我们需要维护两个tag数组,tag1,tag2,大小都是n*4;

令tag1为区间乘一个数的数组,由于区间乘一个数,所以数组tag1全部初始化为1;

代码:

int main() {
	cin >> n >>q>> m;
	for (int i = 0; i <= N * 4; i++)tag1[i] = 1;
	for (int i = 1; i <= n; i++)cin >> a[i];
	build(1, n, 1);
	while (q--) {
		int op; cin >> op;
		if (op == 2) {
			LL x, y, k; cin >> x >> y >> k;
			update(x, y, 1, n, 1, k%m);
		}
		else if (op == 3) {
			LL x, y; cin >> x >> y;
			cout << query(x, y, 1, n, 1)%m  << endl;
		}
		else if (op == 1) {
			LL x, y, k; cin >> x >> y >> k;
			mulpr_update(x, y, 1, n, 1, k);
		}
	}
	return 0;
}

这个模去m是题目要求的,后面不会去详细讲,只会说tag数组如何维护以及query的一点改动;

区间修改

需要两个不同的update来维护区间加和区间乘

区间加就不多赘述了

update

// 更新函数
void update(LL ql, LL qr, LL l, LL r, LL fa, LL k) {
    if (ql <= l && qr >= r) { // 如果更新区间完全覆盖当前区间
        t[fa] = (t[fa] + (r - l + 1) * k) % m; // 更新当前节点的值
        tag2[fa] = (tag2[fa] + k) % m; // 更新加法标记
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    push_down(l, r, fa); // 向下更新标记
    if (ql <= mid) // 如果更新区间在左子树
        update(ql, qr, l, mid, fa << 1, k); // 更新左子树
    if (qr > mid) // 如果更新区间在右子树
        update(ql, qr, mid + 1, r, fa << 1 | 1, k); // 更新右子树
    push_up(fa); // 更新父节点
}

来看一下区间乘

如果要更新的区间覆盖了当前的区间,直接更新当前t数组的值,更新tag1,tag2的懒惰标识,然后return,就不需要下放懒惰标识了;

如果区间没有覆盖,puah_down下放懒惰标识,更新左边,然后更新右边,然后push_up向上更新父节点;

mulpr_update


// 乘法更新函数
void mulpr_update(LL ql, LL qr, LL l, LL r, LL fa, LL k) {
    if (ql <= l && qr >= r) { // 如果更新区间完全覆盖当前区间
        t[fa] = t[fa] * k % m; // 更新当前节点的值
        tag1[fa] = tag1[fa] * k % m; // 更新乘法标记
        tag2[fa] = tag2[fa] * k % m; // 更新加法标记
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    push_down(l, r, fa); // 向下更新标记
    if (ql <= mid) // 如果更新区间在左子树
        mulpr_update(ql, qr, l, mid, fa << 1, k); // 更新左子树
    if (qr > mid) // 如果更新区间在右子树
        mulpr_update(ql, qr, mid + 1, r, fa << 1 | 1, k); // 更新右子树
    push_up(fa); // 更新父节点
}

push_up

代码:

// 向上更新函数,更新父节点的值
void push_up(LL fa) {
    // 父节点的值等于左右子节点的和,取模 m
    t[fa] = (t[fa << 1] + t[fa << 1 | 1]) % m;
}

push_down

比较有难度的一个push_down,如果思路清晰的话就会变得很简单

左:

先将需要下放懒惰标识的区间取mid,更新树t左子节点,用tag1和tag2 fa位置的懒惰值更新

然后更新tag1左子节点,因为是乘,所以将tag1fa父节点的懒惰标识乘上tag1[fa<<1]左子节点的懒惰标识更新该左子节点的懒惰标识

然后更新tag2左子节点,虽然是区间加的懒惰数组,但是tag1和tag2作用在同一个线段树,所以在更新tag2时需要看看tag1[fa]有没有懒惰标识,有的话得加上tag1[fa] * tag2[fa << 1],即如果tag1有懒惰标识,将其乘上tag2左子节点[fa<<1]原本有的懒惰标识;

右:

更新树t右子节点,用tag1和tag2 fa位置的懒惰值更新

然后更新tag1右子节点,因为是乘,所以将tag1fa父节点的懒惰标识乘上tag1[fa<<1|1]右子节点的懒惰标识更新该左子节点的懒惰标识

然后更新tag2右子节点,虽然是区间加的懒惰数组,但是tag1和tag2作用在同一个线段树,所以在更新tag2时需要看看tag1[fa]有没有懒惰标识,有的话得加上tag1[fa] * tag2[fa << 1|1],即如果tag1有懒惰标识,将其乘上tag2左子节点[fa<<1|1]原本有的懒惰标识;

最后因为懒惰标识已经下放,所以将fa节点的懒惰标识置为初始值,tag1置为1,tag2置为0;

代码:

// 向下更新函数,处理懒惰标记
void push_down(LL l, LL r, LL fa) {
    LL mid = (l + r) >> 1; // 计算中间节点
    // 更新左子节点
    t[fa << 1] = (tag1[fa] * t[fa << 1] % m + tag2[fa] * (mid - l + 1) % m) % m;
    tag1[fa << 1] = (tag1[fa << 1] * tag1[fa]) % m; // 更新乘法标记
    tag2[fa << 1] = (tag2[fa] + tag1[fa] * tag2[fa << 1] % m) % m; // 更新加法标记

    // 更新右子节点
    t[fa << 1 | 1] = (tag1[fa] * t[fa << 1 | 1] % m + (tag2[fa] * (r - mid)) % m) % m;
    tag1[fa << 1 | 1] = (tag1[fa << 1 | 1] * tag1[fa]) % m; // 更新乘法标记
    tag2[fa << 1 | 1] = (tag2[fa] + tag1[fa] * tag2[fa << 1 | 1] % m) % m; // 更新加法标记

    // 清空当前节点的标记
    tag1[fa] = 1;
    tag2[fa] = 0;
}

区间查询query

代码:

// 查询函数
LL query(LL ql, LL qr, LL l, LL r, LL fa) {
    LL ret = 0; // 初始化返回值
    if (ql <= l && qr >= r) { // 如果查询区间完全覆盖当前区间
        return t[fa] % m; // 返回当前节点的值
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    push_down(l, r, fa); // 向下更新标记
    if (ql <= mid) // 如果查询区间在左子树
        ret = (ret + query(ql, qr, l, mid, fa << 1)) % m; // 查询左子树
    if (qr > mid) // 如果查询区间在右子树
        ret = (ret + query(ql, qr, mid + 1, r, fa << 1 | 1)) % m; // 查询右子树
    return ret % m; // 返回结果
}

三、例题

例题:P3373 【模板】线段树 2 - 洛谷

完整代码:


#include <iostream>
#include <cstring>
using namespace std;

// 定义常量 N,表示数组的最大大小
const int N = 1e5 + 10;

// 定义长整型别名 LL
typedef long long LL;

// 全局变量
LL n, m, q; // n: 数组大小, m: 模数, q: 查询次数
LL t[N * 4], a[N]; // t: 线段树数组, a: 原始数组
LL tag1[N * 4], tag2[N * 4]; // tag1: 乘法标记, tag2: 加法标记

// 向上更新函数,更新父节点的值
void push_up(LL fa) {
    // 父节点的值等于左右子节点的和,取模 m
    t[fa] = (t[fa << 1] + t[fa << 1 | 1]) % m;
}

// 向下更新函数,处理懒惰标记
void push_down(LL l, LL r, LL fa) {
    LL mid = (l + r) >> 1; // 计算中间节点
    // 更新左子节点
    t[fa << 1] = (tag1[fa] * t[fa << 1] % m + tag2[fa] * (mid - l + 1) % m) % m;
    tag1[fa << 1] = (tag1[fa << 1] * tag1[fa]) % m; // 更新乘法标记
    tag2[fa << 1] = (tag2[fa] + tag1[fa] * tag2[fa << 1] % m) % m; // 更新加法标记

    // 更新右子节点
    t[fa << 1 | 1] = (tag1[fa] * t[fa << 1 | 1] % m + (tag2[fa] * (r - mid)) % m) % m;
    tag1[fa << 1 | 1] = (tag1[fa << 1 | 1] * tag1[fa]) % m; // 更新乘法标记
    tag2[fa << 1 | 1] = (tag2[fa] + tag1[fa] * tag2[fa << 1 | 1] % m) % m; // 更新加法标记

    // 清空当前节点的标记
    tag1[fa] = 1; 
    tag2[fa] = 0;
}

// 建树函数
void build(LL l, LL r, LL fa) {
    if (l == r) { // 如果区间只有一个元素
        t[fa] = a[l] % m; // 直接赋值
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    build(l, mid, fa << 1); // 递归构建左子树
    build(mid + 1, r, fa << 1 | 1); // 递归构建右子树
    push_up(fa); // 更新父节点
}

// 查询函数
LL query(LL ql, LL qr, LL l, LL r, LL fa) {
    LL ret = 0; // 初始化返回值
    if (ql <= l && qr >= r) { // 如果查询区间完全覆盖当前区间
        return t[fa] % m; // 返回当前节点的值
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    push_down(l, r, fa); // 向下更新标记
    if (ql <= mid) // 如果查询区间在左子树
        ret = (ret + query(ql, qr, l, mid, fa << 1)) % m; // 查询左子树
    if (qr > mid) // 如果查询区间在右子树
        ret = (ret + query(ql, qr, mid + 1, r, fa << 1 | 1)) % m; // 查询右子树
    return ret % m; // 返回结果
}

// 更新函数
void update(LL ql, LL qr, LL l, LL r, LL fa, LL k) {
    if (ql <= l && qr >= r) { // 如果更新区间完全覆盖当前区间
        t[fa] = (t[fa] + (r - l + 1) * k) % m; // 更新当前节点的值
        tag2[fa] = (tag2[fa] + k) % m; // 更新加法标记
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    push_down(l, r, fa); // 向下更新标记
    if (ql <= mid) // 如果更新区间在左子树
        update(ql, qr, l, mid, fa << 1, k); // 更新左子树
    if (qr > mid) // 如果更新区间在右子树
        update(ql, qr, mid + 1, r, fa << 1 | 1, k); // 更新右子树
    push_up(fa); // 更新父节点
}

// 乘法更新函数
void mulpr_update(LL ql, LL qr, LL l, LL r, LL fa, LL k) {
    if (ql <= l && qr >= r) { // 如果更新区间完全覆盖当前区间
        t[fa] = t[fa] * k % m; // 更新当前节点的值
        tag1[fa] = tag1[fa] * k % m; // 更新乘法标记
        tag2[fa] = tag2[fa] * k % m; // 更新加法标记
        return;
    }
    LL mid = (l + r) >> 1; // 计算中间节点
    push_down(l, r, fa); // 向下更新标记
    if (ql <= mid) // 如果更新区间在左子树
        mulpr_update(ql, qr, l, mid, fa << 1, k); // 更新左子树
    if (qr > mid) // 如果更新区间在右子树
        mulpr_update(ql, qr, mid + 1, r, fa << 1 | 1, k); // 更新右子树
    push_up(fa); // 更新父节点
}

// 主函数
int main() {
    cin >> n >> q >> m; // 输入数组大小 n, 查询次数 q, 模数 m
    for (int i = 0; i <= N * 4; i++) tag1[i] = 1; // 初始化乘法标记为 1
    for (int i = 1; i <= n; i++) cin >> a[i]; // 输入数组元素
    build(1, n, 1); // 构建线段树
    while (q--) { // 处理每个查询
        int op; cin >> op; // 输入操作类型
        if (op == 2) { // 加法更新操作
            LL x, y, k; cin >> x >> y >> k; // 输入区间 [x, y] 和加数 k
            update(x, y, 1, n, 1, k % m); // 执行加法更新
        }
        else if (op == 3) { // 查询操作
            LL x, y; cin >> x >> y; // 输入查询区间 [x, y]
            cout << query(x, y, 1, n, 1) % m << endl; // 输出查询结果
        }
        else if (op == 1) { // 乘法更新操作
            LL x, y, k; cin >> x >> y >> k; // 输入区间 [x, y] 和乘数 k
            mulpr_update(x, y, 1, n, 1, k); // 执行乘法更新
        }
    }
    return 0; // 程序结束
}


总结

本期关于线段树的讲解就到这里,有什么疑问或者有什么错误的地方欢迎大家一起交流学习,下期带来线段树的离散化,二分搜索等进阶内容

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值