Problem Description
单身!
依然单身!
吉哥依然单身!
DS级码农吉哥依然单身!
所以,他生平最恨情人节,不管是214还是77,他都讨厌!
吉哥观察了214和77这两个数,发现:
2+1+4=7
7+7=7*2
77=7*11
最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!
什么样的数和7有关呢?
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
依然单身!
吉哥依然单身!
DS级码农吉哥依然单身!
所以,他生平最恨情人节,不管是214还是77,他都讨厌!
吉哥观察了214和77这两个数,发现:
2+1+4=7
7+7=7*2
77=7*11
最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!
什么样的数和7有关呢?
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
Input
输入数据的第一行是case数T(1 <= T <= 50),然后接下来的T行表示T个case;每个case在一行内包含两个正整数L, R(1 <= L <= R <= 10^18)。
Output
请计算[L,R]中和7无关的数字的平方和,并将结果对10^9 + 7 求模后输出。
Sample Input
3 1 9 10 11 17 17
Sample Output
236 221 0
讲道理,我好像好久没写博客了==........
这个题我觉得我很有必要记一下,因为这是我碰到的第一个以结构体为单元的数位dp
cnt表示当前状态下的与7无关的数的个数,在搜索的过程中很容易得到
sum表示当前状态下的与7无关的数的合
那么newsum = i*10^len*cnt + sum(i是当前选取的数,用cnt个加上cnt个数的和即sum,便是新的数的和)
sqsum表示当前状态下与7无关的数的平方和
(i*10^len + num)^2 = (i*10^len)^2 + 2*i*10^len*num + num^2;
而cnt个数的平方和就是
(i*10^len)^2*cnt + SUM(num^2) + 2*i*10^len*SUM(num)
即(i*10^len)^2*cnt + sqsum + 2*i*10^len*sum。
详情请见这位 大牛
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdio>
#include <queue>
#include <cmath>
#include <ctype.h>
using namespace std;
typedef __int64 LL;
LL l,r;
LL a[67],b[22];
const LL MOD=1e9+7;
struct ppp
{
LL geshu,he,pfh;
ppp(){}
ppp(LL g,LL h,LL p){geshu=g;he=h;pfh=p;}
ppp(ppp& cc){geshu=cc.geshu;he=cc.he;pfh=cc.pfh;}
}dp[66][9][9];
ppp dfs(LL pos,LL sum/*数位和*/,LL num/*数字*/,bool limit)
{
if(pos==-1)
{
ppp tt;
if(sum!=0&&num!=0)tt=ppp(1,0,0);
else tt=ppp(0,0,0);
return tt;
}
if(!limit&&dp[pos][sum%7][num%7].geshu!=-1)return dp[pos][sum%7][num%7];
LL up=limit?a[pos]:9;
ppp res(0,0,0);
for(int i=0;i<=up;i++)
{
if(i==7)continue;
ppp t;
t=dfs(pos-1,(sum+i)%7,(num*10+i)%7,limit&&i==a[pos]);
res.geshu = (res.geshu + t.geshu) % MOD;
res.he += (((b[pos]*i)%MOD*t.geshu)%MOD + t.he) % MOD;
res.he %= MOD;
res.pfh += (t.pfh + ((2*b[pos]*i)%MOD*t.he)%MOD) %MOD;
res.pfh %= MOD;
res.pfh += ((i*b[pos]*i%MOD)*b[pos]%MOD * t.geshu) %MOD;
res.pfh %= MOD;
}
if(!limit)
{
dp[pos][sum][num]=res;
}
return res;
}
LL solve(LL n)
{
LL N=n,len=0;
while(N)
{
a[len++]=N%10;
N/=10;
}
ppp res;
res=dfs(len-1,0,0,true);
return res.pfh;
}
int main()
{
int T;
scanf("%d",&T);
b[0]=1;
for(LL i=1;i<=19;i++)
{
b[i]=b[i-1]*10;
b[i]%=MOD;
}
memset(dp,-1,sizeof(dp));
while(T--)
{
scanf("%I64d%I64d",&l,&r);
LL ans=solve(r)-solve(l-1);
ans=(ans%MOD+MOD)%MOD;
printf("%I64d\n",ans);
}
return 0;
}