HDU 4507 恨7不成妻

Problem Description
  单身!
  依然单身!
  吉哥依然单身!
  DS级码农吉哥依然单身!
  所以,他生平最恨情人节,不管是214还是77,他都讨厌!
  
  吉哥观察了214和77这两个数,发现:
  2+1+4=7
  7+7=7*2
  77=7*11
  最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!

  什么样的数和7有关呢?

  如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
  1、整数中某一位是7;
  2、整数的每一位加起来的和是7的整数倍;
  3、这个整数是7的整数倍;

  现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
 

Input
输入数据的第一行是case数T(1 <= T <= 50),然后接下来的T行表示T个case;每个case在一行内包含两个正整数L, R(1 <= L <= R <= 10^18)。
 

Output
请计算[L,R]中和7无关的数字的平方和,并将结果对10^9 + 7 求模后输出。
 

Sample Input
  
  
3 1 9 10 11 17 17
 

Sample Output
  
  
236 221 0
 

讲道理,我好像好久没写博客了==........
这个题我觉得我很有必要记一下,因为这是我碰到的第一个以结构体为单元的数位dp

cnt表示当前状态下的与7无关的数的个数,在搜索的过程中很容易得到
sum表示当前状态下的与7无关的数的合
那么newsum = i*10^len*cnt + sum(i是当前选取的数,用cnt个加上cnt个数的和即sum,便是新的数的和)
sqsum表示当前状态下与7无关的数的平方和
(i*10^len + num)^2 = (i*10^len)^2 + 2*i*10^len*num + num^2;
而cnt个数的平方和就是
(i*10^len)^2*cnt + SUM(num^2) + 2*i*10^len*SUM(num)
即(i*10^len)^2*cnt + sqsum + 2*i*10^len*sum。


详情请见这位 大牛

#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdio>
#include <queue>
#include <cmath>
#include <ctype.h>
using namespace std;
typedef __int64 LL;
LL l,r;
LL a[67],b[22];

const LL MOD=1e9+7;

struct ppp
{
    LL geshu,he,pfh;
    ppp(){}
    ppp(LL g,LL h,LL p){geshu=g;he=h;pfh=p;}
    ppp(ppp& cc){geshu=cc.geshu;he=cc.he;pfh=cc.pfh;}

}dp[66][9][9];

ppp dfs(LL pos,LL sum/*数位和*/,LL num/*数字*/,bool limit)
{
    if(pos==-1)
    {
        ppp tt;
        if(sum!=0&&num!=0)tt=ppp(1,0,0);
        else tt=ppp(0,0,0);
        return tt;
    }
    if(!limit&&dp[pos][sum%7][num%7].geshu!=-1)return dp[pos][sum%7][num%7];
    LL up=limit?a[pos]:9;
    ppp res(0,0,0);
    for(int i=0;i<=up;i++)
    {
        if(i==7)continue;
        ppp t;
        t=dfs(pos-1,(sum+i)%7,(num*10+i)%7,limit&&i==a[pos]);
        res.geshu = (res.geshu + t.geshu) % MOD;
        res.he += (((b[pos]*i)%MOD*t.geshu)%MOD + t.he) % MOD;
        res.he %= MOD;
        res.pfh += (t.pfh + ((2*b[pos]*i)%MOD*t.he)%MOD) %MOD;
        res.pfh %= MOD;
        res.pfh += ((i*b[pos]*i%MOD)*b[pos]%MOD * t.geshu) %MOD;
        res.pfh %= MOD;
    }
    if(!limit)
    {
        dp[pos][sum][num]=res;
    }
    return res;
}

LL solve(LL n)
{
    LL N=n,len=0;
    while(N)
    {
        a[len++]=N%10;
        N/=10;
    }
    ppp res;
    res=dfs(len-1,0,0,true);
    return res.pfh;
}
int main()
{
    int T;
    scanf("%d",&T);
    b[0]=1;
    for(LL i=1;i<=19;i++)
    {
        b[i]=b[i-1]*10;
        b[i]%=MOD;
    }
    memset(dp,-1,sizeof(dp));
    while(T--)
    {
        scanf("%I64d%I64d",&l,&r);
        LL ans=solve(r)-solve(l-1);
        ans=(ans%MOD+MOD)%MOD;
        printf("%I64d\n",ans);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值