阶跃折射率光纤的波动光学理论

1波动方程。

           光纤是一种介质光波导,这种波导具有无传导电流、无自由电荷和线性各向同性的特点。在光纤中传播的电磁波满足麦克斯韦方程组。

2波动方程的解和光纤中的模式。

    2.1标量解。

      归一化截止频率:

                                                                       

     截止波长:

                                                                       

       其中,  a为纤芯半径,n1为纤芯折射率,△为相对折射率差。

        对于某一光纤,每个模式,都对应一个截止波长,当实际波长小于截止波长时,该模式可以传输,当实际波长大于截止波长时,该模式截止。若光纤中只有一种传输模式,则加单模光纤,这种光纤没有模式色散ÿ

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
阶跃折射率光纤可以看做是由两个折射率不同的区域组成,即纤芯和包层。在光纤中,电场服从波动方程,可以通过电场贝塞尔方程来描述。 电场贝塞尔方程的一般形式为: $$\nabla_T^2 E_T + k^2 n^2(r) E_T = 0$$ 其中,$\nabla_T^2$是横向拉普拉斯算符,$k$是波矢量,$n(r)$是光纤中的折射率分布函数。 对于阶跃折射率光纤折射率分布函数为: $$n(r) = \begin{cases}n_1, & r < a \\ n_2, & r \geq a \end{cases}$$ 其中,$n_1$和$n_2$分别是纤芯和包层的折射率,$a$是纤芯半径。 将折射率分布函数代入电场贝塞尔方程中,可以得到阶跃折射率光纤中的电场贝塞尔方程: $$\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial E_T}{\partial r} \right) + \left( k^2 n_1^2 - \beta^2 \right) E_T = 0, \quad r < a$$ $$\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial E_T}{\partial r} \right) + k^2 n_2^2 E_T = 0, \quad r \geq a$$ 其中,$\beta$是横向波矢量,可以通过边界条件来确定。 对于纤芯中的电场,可以假设其为类似于氢原子的球谐函数形式: $$E_T(r,\theta) = \sum_{l=0}^{\infty} A_l J_l(\beta r) P_l(\cos\theta), \quad r < a$$ 其中,$J_l$是第一类贝塞尔函数,$P_l$是勒让德多项式,$A_l$是待定系数。 对于包层中的电场,可以假设其为指数衰减函数形式: $$E_T(r,\theta) = \sum_{l=0}^{\infty} B_l H_l^{(1)}(\gamma r) P_l(\cos\theta), \quad r \geq a$$ 其中,$H_l^{(1)}$是第一类汉克尔函数,$\gamma = \sqrt{k^2 n_2^2 - \beta^2}$,$B_l$是待定系数。 需要注意的是,由于阶跃折射率光纤具有轴对称性,因此只需要考虑$E_T$的径向分量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值