波动光学

本文深入探讨波动光学,包括光的干涉、衍射和偏振现象。干涉部分详细阐述了杨氏双缝干涉的光程差、明暗条件和相邻条纹间距。衍射部分涉及惠更斯-菲涅尔原理、单缝衍射的各级明暗纹位置和光栅衍射的光栅方程。最后,讨论了光的偏振,包括基本概念、马吕斯定律和布鲁斯特定律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、光的干涉

1、杨氏双缝干涉

1.1、光程差

δ = r 2 − r 1 = d x D \delta=r_2-r_1=\frac{dx}{D} δ=r2r1=Ddx

1.2、明暗条件

δ = d x D = { ± 2 k λ 2 明 条 纹 ± ( 2 k + 1 ) λ 2 暗 条 纹 \delta=\frac{dx}{D}=\begin{cases}\pm2k\frac{\lambda}{2}&明条纹\\\pm(2k+1)\frac{\lambda}{2} &暗条纹\end{cases} δ=Ddx={ ±2k2λ±(2k+1)2λ    其中 k = 0 , 1 , 2 , ⋅ ⋅ ⋅ k=0,1,2,··· k=0,1,2,

1.3、相邻条纹间距

Δ x = D λ d \Delta x=\frac{D\lambda}{d} Δx=dDλ

2、光程与光程差

2.1、光程

    光程等于介质折射率乘以光在介质中传播的路程,即 光 称 = n r 光称=nr =nr

2.2、光程差

δ = n 2 r 2 − n 1 r 1 \delta=n_2r_2-n_1r_1 δ=n2

### COMSOL Multiphysics 波动光学模拟教程及案例 #### 使用场景与优势 COMSOL Multiphysics 是一个多物理场仿真平台,在波动光学领域有着广泛的应用。该软件能够精确地模拟电磁波传播特性,支持多种边界条件设置和材料属性定义,适用于研究纤通信、激器设计、微纳结构子学等领域中的复杂现象[^1]。 #### 主要功能介绍 - **频域模块**:用于分析稳态情况下的电动力学问题; - **时域模块 (FDTD)** :适合瞬态过程的研究,特别是对于脉冲响应的计算非常有用; - **射线追踪接口**:当线数目较多且几何形状较为简单时可采用此方法来提高效率; - **全矢量模式求解器**:专门针对导波型器件如纤耦合器等进行优化; #### 实际操作指南 为了更好地理解如何利用 COMSOL 进行波动光学方面的项目开发,下面给出一个简单的实例说明: ##### 创建模型文件夹并导入几何图形 启动程序后新建工程文档,选择合适的单元尺寸单位(通常为纳米级),接着加载所需的三维物体或二维截面图作为工作区域内的基础构件。 ```matlab % 设置默认长度单位为nm setpref('comsol','LengthUnit','nm'); ``` ##### 定义介质参数 根据实际应用场景指定各向同性/异性的折射率分布规律以及其他必要的物性常数表征信息。 ```matlab % 添加新材料 add_material; material_name = 'Silicon'; set(material, 'Name', material_name); set(material, 'RefractiveIndex', 3.48); % Si 的实部折射率约为3.48 @ λ=1550 nm ``` ##### 应用边界条件 合理配置入射角和平行偏振方向等因素影响下不同类型的端口形式及其关联参量设定。 ```matlab % 配置完美匹配层(PML),减少反射误差 bc_pml = add_boundary_condition(model,'PML'); set(bc_pml,'Thickness',[20e-9; 20e-9]); % PML 层厚度设为20 nm ``` ##### 执行网格划分与求解运算 依据具体需求调整离散化程度从而平衡精度与时效之间的关系,并最终调用内置算法完成数值积分任务获取结果数据集。 ```matlab mesh = generate_mesh(model); solution = solvepde(model); fields = evaluate(solution,'ElectricField'); % 提取电场强度分量 ``` ##### 可视化呈现效果评估 借助内嵌绘图工具箱绘制出直观形象化的图表辅助解读所得结论,比如远近场辐射图案、透射吸收谱线变化趋势等等。 ```matlab figure(); contourf(abs(fields).^2); colorbar(); title(['Intensity Distribution']); xlabel('X-axis / nm'); ylabel('Y-axis / nm'); axis equal tight; ``` 以上仅是一个简化版的教学示范流程概述,更多高级技巧还需读者深入探索官方手册及相关文献资料以获得全面详尽的知识体系构建[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值