【数论-莫比乌斯】bzoj 2301 莫比乌斯+容斥

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 5414  Solved: 2488
[Submit][Status][Discuss]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2
2 5 1 5 1
1 5 1 5 2

Sample Output

14
3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000


题意:

思路:莫比乌斯+容斥

容斥wa了一发,由于没有+ans4,具体容斥见代码。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long ll;

const int N=100100;

bool check[N+10];
int prime[N+10];
int mu[N+10];
void Mublus()
{
    memset(check,false,sizeof(check));
    mu[1]=1;
    int tot=0;
    for(int i=2;i<=N;i++)
    {
        if(!check[i])
        {
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i*prime[j]>N) break;
            check[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
            {
                mu[i*prime[j]]=-mu[i];
            }
        }
    }
}

int sum[N+10];
ll solve(int n,int m)
{
    ll ans=0;
    if(n>m) swap(n,m);
    for(int i=1,la=0;i<=n;i=la+1)
    {
        la=min(n/(n/i),m/(m/i));
        ans+=(ll)(sum[la]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main()
{
    Mublus();
    sum[0]=0;
    for(int i=1;i<=N;i++)
        sum[i]=sum[i-1]+mu[i];

    int t;
    scanf("%d",&t);
    while(t--)
    {
        int a,n,c,m,k;
        scanf("%d%d%d%d%d",&a,&n,&c,&m,&k);
        ll ans=0,ans1=0,ans2=0,ans3=0,ans4=0;    //容斥;

        ans1=solve(m/k,n/k);
        ans2=solve((a-1)/k,m/k);
        ans3=solve((c-1)/k,n/k);
        ans4=solve((a-1)/k,(c-1)/k);
        ans=ans1-ans2-ans3+ans4;

        printf("%lld\n",ans);
    }
    return 0;
}



发布了169 篇原创文章 · 获赞 47 · 访问量 12万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览