双T4加速卡虚拟机中掉了一个卡(RmInitAdapter failed)问题的处理记录


前言

同事找我说用的双卡虚拟机只有一个卡显示了,看看怎么处理处理


一、现象

1.1 nvidia-smi的输出只有一个卡

(base) root@XXX:~# nvidia-smi 
Wed Feb 19 14:13:33 2025       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.156.00   Driver Version: 450.156.00   CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:07.0 Off |                    0 |
| N/A   42C    P0    27W /  70W |   9224MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A   2816445      C   .../XXX/bin/python     9221MiB |
+-----------------------------------------------------------------------------+

1.2 dmesg的输出有RmInitAdapter failed

[14094353.118943] NVRM: GPU 0000:00:06.0: RmInitAdapter failed! (0x24:0x65:1224)
[14094353.120811] NVRM: GPU 0000:00:06.0: rm_init_adapter failed, device minor number 0
[14094360.267337] NVRM: GPU 0000:00:06.0: RmInitAdapter failed! (0x24:0x65:1224)
[14094360.269036] NVRM: GPU 0000:00:06.0: rm_init_adapter failed, device minor number 0

1.3 lspci -v的输出

00:06.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
	Subsystem: NVIDIA Corporation TU104GL [Tesla T4]
	Physical Slot: 6
	Flags: bus master, fast devsel, latency 0, IRQ 11
	Memory at fc000000 (32-bit, non-prefetchable) [size=16M]
	Memory at d0000000 (64-bit, prefetchable) [size=256M]
	Memory at f2000000 (64-bit, prefetchable) [size=32M]
	Capabilities: [60] Power Management version 3
	Capabilities: [78] Express Endpoint, MSI 00
	Capabilities: [c8] MSI-X: Enable+ Count=6 Masked-
	Kernel driver in use: nvidia
	Kernel modules: nvidiafb, nouveau, nvidia_drm, nvidia

00:07.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
	Subsystem: NVIDIA Corporation TU104GL [Tesla T4]
	Physical Slot: 7
	Flags: bus master, fast devsel, latency 0, IRQ 10
	Memory at fd000000 (32-bit, non-prefetchable) [size=16M]
	Memory at e0000000 (64-bit, prefetchable) [size=256M]
	Memory at f4000000 (64-bit, prefetchable) [size=32M]
	Capabilities: [60] Power Management version 3
	Capabilities: [78] Express Endpoint, MSI 00
	Capabilities: [c8] MSI-X: Enable+ Count=6 Masked-
	Kernel driver in use: nvidia
	Kernel modules: nvidiafb, nouveau, nvidia_drm, nvidia

二、分析过程及思路

根据RmInitAdapter failed的提示去查,好多说是驱动不行了。但是这是机器是双卡机器,两张卡是相同的,这种方向应该可以直接pass掉。
然后还有说是物理卡坏了。这个有较可能,卡已经好几年了。
没啥好办法,先关闭虚拟机,重启下对应的物理机,然后再把虚拟机拉起来,看看有没有什么变化,确定下是不是卡坏了。

三、动手操作

第一步:虚拟机正常关机

第二步:物理机检查系统日志和dmesg,查看是否有坏道提示和其他的硬件故障提示,别重启死掉了。
检查通过,物理机重启

第三步:物理机启动完毕后,等待虚拟化环境自动恢复,手动启动虚拟机

第四步:虚拟机启动完毕,检查加速卡状态

这时发现问题消失了,两张卡都显示了

联系同事跑下任务,把两个卡都用起来,看看会不会在运行时掉卡

经过一段时间观察,任务正常运行,卡没有掉,问题解决。

root@XXX:~# nvidia-smi 
Wed Feb 19 16:43:36 2025       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.156.00   Driver Version: 450.156.00   CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:00:06.0 Off |                    0 |
| N/A   41C    P0    26W /  70W |   9224MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  Tesla T4            On   | 00000000:00:07.0 Off |                    0 |
| N/A   42C    P0    27W /  70W |   9458MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      6896      C   .../XXX/bin/python     9221MiB |
|    1   N/A  N/A      7011      C   .../XXX/bin/python     9455MiB |
+-----------------------------------------------------------------------------+



总结

重启大法好!前提是重启之后能起来。。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值