DataWhale_天池_零基础入门金融风控_贷款违约预测_Task3_特征工程

本文介绍了DataWhale与阿里天池合作的金融风控新人赛,赛题要求参赛者根据个人信贷数据预测贷款违约可能性,旨在帮助初学者理解金融风控业务和数据竞赛流程。内容涵盖赛题背景、数据介绍以及Task3的关键步骤——特征工程,包括数据预处理、异常值处理、数据分箱、特征交互和特征选择。
摘要由CSDN通过智能技术生成

队伍: NULL

阿里天池比赛地址:
零基础入门金融风控-贷款违约预测

DataWhale组队学习地址:
九月组队学习

一、赛题背景

本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第四场 —— 零基础入门金融风控-贷款违约预测。

赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

为了更好的引导大家入门,赛题方同时为本赛题定制了学习方案,其中包括数据科学库、通用流程和baseline方案学习三部分。通过对本方案的完整学习,可以帮助掌握数据竞赛基本技能。同时平台也将提供专属的视频直播学习通道,敬请关注平台通告。

二、赛题数据

赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值