Codeforces932E DP 组合数学

题解:

其实比赛时就想的差不多了。我是从 xk x k 入手的,看到这个,我就想到:现在有 x x 种东西,放到k个不同箱子里的方案数。然后 k<=5000 k <= 5000 ,考虑从 k k 入手,f[i][j]表示到第 i i 个箱子,放了j种东西的方案数,然后最后的答案就是 min(n,k)i=1f[k][i]×2ni ∑ i = 1 m i n ( n , k ) f [ k ] [ i ] × 2 n − i 。为什么呢?举个例子,比如 k=3 k = 3 n=4 n = 4 ,此时三个箱子放的分别是 112 112 ,那么选出的集合就有可能是 {1,2} { 1 , 2 } {1,2,3} { 1 , 2 , 3 } {1,2,4} { 1 , 2 , 4 } {1,2,3,4} { 1 , 2 , 3 , 4 } ,也就是只要至少含有 {1,2} { 1 , 2 } ,那么剩下的 ni n − i 个选不选都无所谓,也就是 2ni 2 n − i

代码:

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int mod=1e9+7;
const int Maxk=5010;
LL read()
{
    LL x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
    return x*f;
}
LL n,k;
LL Pow(LL x,LL y)
{
    if(!y)return 1;
    if(y==1)return x;
    LL t=Pow(x,y>>1),ans=t*t%mod;
    if(y&1)ans=ans*x%mod;
    return ans;
}
int f[2][Maxk];
int main()
{
    n=read(),k=read();
    f[0][0]=1;int now=0;
    for(int i=1;i<=k;i++)
    {
        now^=1;
        for(int j=1;j<=i;j++)
        f[now][j]=((LL)f[now^1][j]*j+(LL)f[now^1][j-1]*(n-j+1))%mod;
        f[0][0]=0;
    }
    LL ans=0;
    for(int i=1;i<=min(n,k);i++)ans=(ans+f[now][i]*Pow(2LL,n-i)%mod)%mod;
    printf("%I64d",ans);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值