题解:
其实比赛时就想的差不多了。我是从 xk x k 入手的,看到这个,我就想到:现在有 x x 种东西,放到个不同箱子里的方案数。然后 k<=5000 k <= 5000 ,考虑从 k k 入手,表示到第 i i 个箱子,放了种东西的方案数,然后最后的答案就是 ∑min(n,k)i=1f[k][i]×2n−i ∑ i = 1 m i n ( n , k ) f [ k ] [ i ] × 2 n − i 。为什么呢?举个例子,比如 k=3 k = 3 , n=4 n = 4 ,此时三个箱子放的分别是 112 112 ,那么选出的集合就有可能是 {1,2} { 1 , 2 } 、 {1,2,3} { 1 , 2 , 3 } 、 {1,2,4} { 1 , 2 , 4 } 、 {1,2,3,4} { 1 , 2 , 3 , 4 } ,也就是只要至少含有 {1,2} { 1 , 2 } ,那么剩下的 n−i n − i 个选不选都无所谓,也就是 2n−i 2 n − i 。
代码:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int mod=1e9+7;
const int Maxk=5010;
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
LL n,k;
LL Pow(LL x,LL y)
{
if(!y)return 1;
if(y==1)return x;
LL t=Pow(x,y>>1),ans=t*t%mod;
if(y&1)ans=ans*x%mod;
return ans;
}
int f[2][Maxk];
int main()
{
n=read(),k=read();
f[0][0]=1;int now=0;
for(int i=1;i<=k;i++)
{
now^=1;
for(int j=1;j<=i;j++)
f[now][j]=((LL)f[now^1][j]*j+(LL)f[now^1][j-1]*(n-j+1))%mod;
f[0][0]=0;
}
LL ans=0;
for(int i=1;i<=min(n,k);i++)ans=(ans+f[now][i]*Pow(2LL,n-i)%mod)%mod;
printf("%I64d",ans);
}