codeforces 932E Team Work 高等数学求导、dp

题解

这是一道纯粹的数学求导题目。
首先我们先写出要求的公式。
a n s = ∑ r = 1 n C n r r k ans = \sum_{r=1}^{n} C_n^{r}r^k ans=r=1nCnrrk
乍一看,雾草好吓人,但是学过高等数学且稍有常识的人(不是我)可以看出,这个可以由某个式子不断乘x并求导得出来。
没错,稍有常识的人又可以看出来了,这个式子就是 ( 1 + x ) n (1+x)^n (1+x)n
( 1 + x ) n = ∑ r = 0 n C n r x r (1+x)^n = \sum_{r=0}^{n}C_n^{r}x^r (1+x)n=r=0nCnrxr
我们定义 f 0 = d d x ( 1 + x ) n = n ( 1 + x ) n − 1 f_0 = \frac{d}{dx}(1+x)^n = n(1+x)^{n-1} f0=dxd(1+x)n=n(1+x)n1
同时 f 0 ( x ) = ∑ r = 1 n C n r r x r − 1 f_0(x) = \sum_{r=1}^{n} C_n^{r}rx^{r-1} f0(x)=r=1nCnrrxr1
定义 f t ( x ) = d d x ( x f t − 1 ( x ) ) f_t(x) = \frac{d}{dx}(xf_{t-1}(x)) ft(x)=dxd(xft1(x))
这样的话 f k − 1 ( x ) = ∑ r = 1 n C n r r k f_{k-1}(x) = \sum_{r=1}^{n} C_n^{r}r^k fk1(x)=r=1nCnrrk
那么我们要求的答案 a n s = f k − 1 ( 0 ) ( 1 ) ans = f_{k-1}^{(0)}(1) ans=fk1(0)(1)
我们知道 f t ( x ) = d d x ( x f t − 1 ( x ) ) = f t − 1 ( x ) + x f t − 1 ( 1 ) ( x ) f_t(x) = \frac{d}{dx}(xf_{t-1}(x))=f_{t-1}(x)+xf_{t-1}^{(1)}(x) ft(x)=dxd(xft1(x))=ft1(x)+xft1(1)(x)
通过这个操作, f t ( p ) ( 1 ) = ( p + 1 ) f t − 1 ( p ) ( 1 ) + f t − 1 ( p + 1 ) ( 1 ) f_t^{(p)}(1) = (p+1)f_{t-1}^{(p)}(1)+f_{t-1}^{(p+1)}(1) ft(p)(1)=(p+1)ft1(p)(1)+ft1(p+1)(1)
没错!这就是我们的递推公式!
定义 d p [ i ] [ j ] = f i ( j ) ( 1 ) dp[i][j] = f_{i}^{(j)}(1) dp[i][j]=fi(j)(1)
d p [ i ] [ j ] = ( p + 1 ) ∗ d p [ t − 1 ] [ p ] + d p [ t − 1 ] [ p + 1 ] dp[i][j] = (p+1)*dp[t-1][p]+dp[t-1][p+1] dp[i][j]=(p+1)dp[t1][p]+dp[t1][p+1]
由于我们只需要 a n s = d p [ k − 1 ] [ 0 ] ans=dp[k-1][0] ans=dp[k1][0],那么就只需要 d p [ k − 2 ] [ 0...1 ] dp[k-2][0...1] dp[k2][0...1],…,只需要 d p [ 0 ] [ 0... k − 1 ] dp[0][0...k-1] dp[0][0...k1]
状态数 O ( K 2 ) O(K^2) O(K2)


代码
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll N,k;
const ll mod = 1e9+7;
const int maxn = 5007;
ll dp[maxn][maxn],sum[maxn];
ll mod_pow(ll x,ll n){
    ll ans = 1;
    while(n){
        if(n&1)
            ans = ans * x % mod;
        x = x*x%mod;
        n >>= 1;
    }
    return ans;
}
int main(){
    cin>>N>>k;
    if(N == 1){
        return 0*printf("1\n");
    }
    ll pre = N;
    for(int t = 0;t < min(N,5005ll);++t){
        dp[0][t] = pre*mod_pow(2,N-1-t)%mod;
        pre = pre*(N-1-t)%mod;
    }
    for(int i = 1;i <= k;++i){
        for(int j = 0;j <= k;++j){
            dp[i][j] = ((j+1)*dp[i-1][j] + dp[i-1][j+1])%mod;
        }
    }
    printf("%lld\n",dp[k-1][0]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值