[BZOJ]4987: Tree 树形DP

Description

从前有棵树。
找出K个点A1,A2,…,Ak。
使得∑dis(AiAi+1),(1<=i<=K-1)最小。

Solution

这道题首先要用到一个结论,即 a n s = 最 小 的 包 含 A 1 到 A k 的 连 通 块 中 所 有 边 的 和 × 2 − 这 个 连 通 块 直 径 ans=最小的包含A_1到A_k的连通块中所有边的和\times 2-这个连通块直径 ans=A1Ak×2正确性显然。其实是我不会证明。
而使这个取到最小,连通块大小一定是 k k k。于是就可以树形DP, f x , i , 0 / 1 / 2 f_{x,i,0/1/2} fx,i,0/1/2表示以 x x x为根的子树中选了 i i i个点,直径有多少个端点在这个连通块中的最小权值即可。
以后做树形DP一定要注意 d f s dfs dfs儿子的时候会不会改变一些全局数组啊,因为这个搞了好久……

Code

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int Maxn=3010;
const LL inf=1LL<<60;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
    return x*f;
}
void cmin(LL&x,LL y){x=min(x,y);}
int n,k,sz[Maxn];LL f[Maxn][Maxn][3],g[Maxn][3];
struct Edge{int y,next;LL d;}e[Maxn<<1];
int last[Maxn],len=0;
void ins(int x,int y,LL d)
{
    int t=++len;
    e[t].y=y;e[t].d=d;e[t].next=last[x];last[x]=t;
}
void dfs(int x,int fa)
{
    f[x][1][0]=f[x][1][1]=f[x][1][2]=0;
    sz[x]=1;
    memset(g,63,sizeof(g));
    for(int i=last[x];i;i=e[i].next)
    {
        int y=e[i].y;
        if(y==fa)continue;
        dfs(y,x);
        for(int j=1;j<=min(k,sz[x]);j++)
        for(int l=1;l<=sz[y]&&j+l<=k;l++)
        cmin(g[j+l][0],f[x][j][0]+f[y][l][0]+(e[i].d<<1));
         
        for(int j=1;j<=min(k,sz[x]);j++)
        for(int l=1;l<=sz[y]&&j+l<=k;l++)
        cmin(g[j+l][1],min(f[x][j][0]+f[y][l][1]+e[i].d,f[x][j][1]+f[y][l][0]+(e[i].d<<1)));
         
        for(int j=1;j<=min(k,sz[x]);j++)
        for(int l=1;l<=sz[y]&&j+l<=k;l++)
        cmin(g[j+l][2],min(min(f[x][j][0]+f[y][l][2],f[x][j][2]+f[y][l][0])+(e[i].d<<1),f[x][j][1]+f[y][l][1]+e[i].d));
         
        sz[x]+=sz[y];
        for(int j=1;j<=sz[x];j++)
        for(int l=0;l<3;l++)
        cmin(f[x][j][l],g[j][l]);
    }
    memset(g,63,sizeof(g));
}
int main()
{
    memset(f,63,sizeof(f));
    n=read(),k=read();
    for(int i=1;i<n;i++)
    {
        int x=read(),y=read(),d=read();
        ins(x,y,d),ins(y,x,d);
    }
    dfs(1,0);
    LL ans=inf;
    for(int i=1;i<=n;i++)cmin(ans,f[i][k][2]);
    printf("%lld",ans);
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值