木卯_THU
码龄8年
关注
提问 私信
  • 博客:479,117
    479,117
    总访问量
  • 50
    原创
  • 1,714,379
    排名
  • 1,090
    粉丝
  • 45
    铁粉

个人简介:清华大学媒体所硕士

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2016-12-03
博客简介:

木卯_THU的博客

博客描述:
清华大学计算机系媒体所小硕士的成长之旅
查看详细资料
个人成就
  • 获得786次点赞
  • 内容获得228次评论
  • 获得4,200次收藏
  • 代码片获得2,045次分享
创作历程
  • 50篇
    2021年
  • 1篇
    2020年
成就勋章
TA的专栏
  • 计算机视觉
    49篇
  • Deep Learning
    43篇
  • 学习笔记
    49篇
  • 阅读笔记
    1篇
  • 姿态估计
    1篇
  • jittor
    1篇
兴趣领域 设置
  • 人工智能
    深度学习pytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

184人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

光流估计(一)-- 仿射变换

图像仿射变换矩阵如何靠六个参数确定
原创
发布博客 2021.12.13 ·
5513 阅读 ·
1 点赞 ·
1 评论 ·
19 收藏

深度学习之图像分类(三十一)-- CycleMLP网络详解

深度学习之图像分类(三十一)CycleMLP网络详解目录深度学习之图像分类(三十一)CycleMLP网络详解1. 前言2. CycleMLP2.1 CycleMLP Block2.2 整体网络结构3. 下游任务实验4. 消融实验4. 总结与反思5. 代码这应该是目前最后学习的一篇 MLP 架构的论文了,CycleMLP 其实和 AS-MLP 的思想基本一致,让我们来详细看看。1. 前言本此学习香港大学&商汤联合提出的 CycleMLP。这也是我看到的除 AS-MLP 外将纯 MLP 做成
原创
发布博客 2021.10.21 ·
3792 阅读 ·
4 点赞 ·
4 评论 ·
22 收藏

深度学习之图像分类(三十)-- Hire-MLP网络详解

深度学习之图像分类(三十)Hire-MLP网络详解目录深度学习之图像分类(三十)Hire-MLP网络详解1. 前言2. Hire-MLP2.1 Hire-MLP Block2.1.1 Inner-Region2.1.2 Cross-Region2.1.3 特征融合2.1.4 HireMLP 和 ViP,AS-MLP 的区别?2.2 整体网络结构3. 消融实验4. 总结与反思5. 代码一晃都学习了三十个网络了,时间过得真快。本次学习华为提出的 Hire-MLP,依然是通过旋转特征图,将不同位置的特征对齐到
原创
发布博客 2021.10.20 ·
2084 阅读 ·
5 点赞 ·
3 评论 ·
9 收藏

深度学习之图像分类(二十九)-- Sparse-MLP网络详解

深度学习之图像分类(二十九)Sparse-MLP网络详解目录深度学习之图像分类(二十九)Sparse-MLP网络详解1. 前言2. sMLPNet2.1 整体网络结构2.2 Token-mixing MLP2.3 计算复杂度3. 消融实验4. 反思与总结5. 代码本文再次讲述一篇新的 Sparse-MLP 工作,其的 Sparse 主要描述在感受野层面,与 MLP-Mixer 的全局感受野相比,本网络的感受野是轴向的,所以是稀疏的。本文可以看作是 ConvMLP 和 ViP 的结合,但是其发布时间早 C
原创
发布博客 2021.10.19 ·
4176 阅读 ·
4 点赞 ·
1 评论 ·
12 收藏

深度学习之图像分类(二十八)-- Sparse-MLP(MoE)网络详解

深度学习之图像分类(二十八)Sparse-MLP(MoE)网络详解目录深度学习之图像分类(二十八)Sparse-MLP(MoE)网络详解1. 前言2. Mixture of Experts2.1 背景2.2 MoE2.3 损失函数2.4 Re-represent Layers3. 消融实验4. 反思与总结本工作向 Vision MLP 中引入 Mixture-of-Experts (MoE), 但是 发现其 MoE 使用方法和 Scaling Vision with Sparse Mixture of
原创
发布博客 2021.10.18 ·
4737 阅读 ·
3 点赞 ·
0 评论 ·
14 收藏

深度学习之图像分类(二十七)-- ConvMLP 网络详解

深度学习之图像分类(二十七)ConvMLP 网络详解目录深度学习之图像分类(二十七)ConvMLP 网络详解1. 前言2. ConvMLP: CNN or MLP?2.1 Convolutional Tokenizer2.2 Conv Stage2.3 Conv-MLP Stage2.4 Classifier head2.5 网络配置参数3. Visualizations4. 反思与总结5. 代码是传统 CNN 还是 MLP?大家一起来看看这个所谓的层次卷积 MLP。不可否认其在实验上很充分,考虑了下游
原创
发布博客 2021.10.13 ·
3627 阅读 ·
5 点赞 ·
3 评论 ·
12 收藏

深度学习之图像分类(二十六)-- ConvMixer 网络详解

深度学习之图像分类(二十六)ConvMixer 网络详解目录深度学习之图像分类(二十六)ConvMixer 网络详解1. 前言2. A Simple Model: ConvMixer2.1 Patch Embedding2.2 ConvMixer Layer2.3 ConvMixer 网络结构2.4 实现代码:3. Weight Visualizations4. 反思与总结本次学习继 CNN --> Transformer --> MLP 架构之后,探讨究竟是 Transformer 和 M
原创
发布博客 2021.10.08 ·
7283 阅读 ·
16 点赞 ·
7 评论 ·
52 收藏

深度学习之图像分类(二十五)-- S2MLPv2 网络详解

深度学习之图像分类(二十五)S2MLPv2 网络详解目录深度学习之图像分类(二十五)S2MLPv2 网络详解1. 前言2. S2MLPv22.1 S2MLPv2 Block2.2 Spatial-shift 与感受野反思3. 总结4. 代码经过 S2MLP 和 Vision Permutator 的沉淀,为此本节我们便来学习学习 S2MLPv2 的基本思想。1. 前言S2MLPv2 依是百度提出的用于视觉的空间位移 MLP 架构,其作者以及顺序与 S2MLP 一模一样,其论文为 S2-MLPv2
原创
发布博客 2021.10.07 ·
1695 阅读 ·
3 点赞 ·
2 评论 ·
8 收藏

深度学习之图像分类(二十四)-- Vision Permutator 网络详解

深度学习之图像分类(二十四)Vision Permutator 网络详解目录深度学习之图像分类(二十四)Vision Permutator 网络详解1. 前言2. ViP 网络结构3. Permutators3.1 Permute-MLP 结构3.2 特征融合3.3 分支分析4. 总结5. 代码为了承接前文 S2MLP 以及之后的 S2MLPv2,本章节学习 Vision Permutator 网络。1. 前言ViP (Vision Permutator) 是新加坡国立南开等机构联合提出的新型
原创
发布博客 2021.10.05 ·
2853 阅读 ·
3 点赞 ·
1 评论 ·
19 收藏

深度学习之图像分类(二十三)-- S2MLP网络详解

深度学习之图像分类(二十三)S2MLP网络详解目录深度学习之图像分类(二十三)S2MLP网络详解1. 前言2. S2MLP 网络结构3. S2MLP Block3.1 Block 结构3.2 Spatial-shift 操作5. 总结6. 代码在上一讲 AS-MLP 中,我们发现该工作和百度的 S2MLP 接近,为此本节我们便来学习学习 S2MLP 的基本思想,其想将图像的局部性融入纯 MLP 结构中去。1. 前言S2MLP 是百度提出的用于视觉的空间位移 MLP 架构,论文为 S2 -MLP
原创
发布博客 2021.10.03 ·
2097 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

深度学习之图像分类(二十二)-- AS-MLP网络详解

深度学习之图像分类(二十一)AS-MLP网络详解目录深度学习之图像分类(二十一)AS-MLP网络详解1. 前言2. AS-MLP 网络结构3. AS-MLP Block3.1 Block 结构3.2 Axis Shift3.2.1 感受野分析3.2.2 并行串行分析3.2.3 padding 分析3.3 额外补充4. AS-MLP 与下游任务5. 总结6. 代码在上一讲 MLP-Mixer 最后,我提出了几个问题: MLP-Mixer 是否可以为分割、识别等下游任务提供太大的帮助呢?MLP-Mixer
原创
发布博客 2021.09.30 ·
3326 阅读 ·
8 点赞 ·
14 评论 ·
17 收藏

深度学习之图像分类(二十一)-- MLP-Mixer网络详解

深度学习之图像分类(二十一)MLP-Mixer网络详解目录深度学习之图像分类(二十一)MLP-Mixer网络详解1. 前言2. MLP-Mixer 网络结构3. 总结4. 代码继 Transformer 之后,我们开启了一个新篇章,即无关卷积和注意力机制的最原始形态,全连接网络。在本章中我们学习全连接构成的 MLP-Mixer。(仔细发现,这个团队其实就是 ViT 团队…),作为一种“开创性”的工作,挖了很多很多的新坑,也引发了后续一系列工作。也许之后是 CNN、Transformer、MLP 三分天下
原创
发布博客 2021.09.28 ·
12713 阅读 ·
37 点赞 ·
15 评论 ·
101 收藏

深度学习之目标检测(十一)--DETR详解

深度学习之图像分类(十一)DETR详解深度学习之目标检测(十一)-- DETR详解深度学习之图像分类(十一)DETR详解1. 前言2. DETR 框架2.1 CNN Backbone2.2 Transformer Encoder2.3 Transformer Decoder2.4 FFN3. 二分图匹配和损失函数4. 代码5. 总结继 Transformer 应用于图像分类后,本章学习 Transformer 应用于图像目标检测的开山之作 – DEtection TRansformer,其大大简化了目标
原创
发布博客 2021.09.26 ·
114445 阅读 ·
231 点赞 ·
33 评论 ·
1209 收藏

深度学习之图像分类(二十)-- Transformer in Transformer(TNT)网络详解

深度学习之图像分类(二十)Transformer in Transformer(TNT)网络详解目录深度学习之图像分类(二十)Transformer in Transformer(TNT)网络详解1. 前言2. TNT Block3. Position encoding4. 复杂度计算分析5. 可视化结果6. 代码本节学习 Transformer 嵌入 Transformer 的融合网络 TNT,思想自然,源于华为,值得一看。1. 前言Transformer in Transformer(TNT)
原创
发布博客 2021.09.16 ·
4893 阅读 ·
15 点赞 ·
1 评论 ·
45 收藏

深度学习之图像分类(十九)-- Bottleneck Transformer(BoTNet)网络详解

深度学习之图像分类(十九)Bottleneck Transformer(BoTNet)网络详解目录深度学习之图像分类(十九)Bottleneck Transformer(BoTNet)网络详解1. 前言2. Multi-Head Self-Attention3. Bottleneck Transformer4. BoTNet 网络结构5. 代码上节有讲 ViT 结构。本节学习 CNN 与 Attention 的融合网络 BoTNet,即 Bottleneck Transformer。1. 前言Bo
原创
发布博客 2021.09.10 ·
12952 阅读 ·
41 点赞 ·
44 评论 ·
186 收藏

深度学习之图像分类(十八)-- Vision Transformer(ViT)网络详解

深度学习之图像分类(十八)Vision Transformer(ViT)网络详解目录深度学习之图像分类(十八)Vision Transformer(ViT)网络详解1. 前言2. ViT 模型架构2.1 Embedding 层2.2 Transformer Encoder 层2.3 MLP Head 层2.4 ViT B/162.5 ViT 模型参数3. Hybrid 混合模型4. 代码上节有讲 Transformer 中的 Self-Attention 结构。本节学习 Vision Transform
原创
发布博客 2021.09.09 ·
39481 阅读 ·
67 点赞 ·
18 评论 ·
382 收藏

深度学习之图像分类(十七)-- Transformer中Self-Attention以及Multi-Head Attention详解

深度学习之图像分类(十七)Transformer中Self-Attention以及Multi-Head Attention详解目录深度学习之图像分类(十七)Transformer中Self-Attention以及Multi-Head Attention详解1. 前言2. Self-Attention3. Multi-head Self-Attention3. Positional Encoding终于来到了 Transformer,从 2013 年分类网络学习到如今最火的 Transformer,真的不
原创
发布博客 2021.09.08 ·
4040 阅读 ·
9 点赞 ·
3 评论 ·
50 收藏

深度学习之图像分类(十六)-- EfficientNetV2 网络结构

深度学习之图像分类(十六)EfficientNetV1 网络结构目录深度学习之图像分类(十六)EfficientNetV1 网络结构1. 前言2. 从 EfficientNetV1 到 EfficientNetV23. EfficientNetV2 网络框架4. 渐进式学习策略5. 代码本节学习 EfficientNetV2 网络结构。学习视频源于 Bilibili,博客参考 EfficientNetV2网络详解。1. 前言EfficientNetV2 是 2021 年 4 月发表于 CVPR 的
原创
发布博客 2021.09.07 ·
13088 阅读 ·
15 点赞 ·
13 评论 ·
71 收藏

深度学习之图像分类(十五)-- EfficientNetV1 网络结构

深度学习之图像分类(十五)EfficientNetV1 网络结构目录深度学习之图像分类(十五)EfficientNetV1 网络结构1. 前言2. 宽度,深度以及分辨率3. EfficientNetV1 网络结构4. 代码本节学习 EfficientNetV1 网络结构。学习视频源于 Bilibili。参考博客太阳花的小绿豆: EfficientNet网络详解.1. 前言EfficientNetV1 是由Google团队在 2019 年提出的,其原始论文为 EfficientNet: Rethin
原创
发布博客 2021.09.05 ·
5481 阅读 ·
6 点赞 ·
4 评论 ·
38 收藏

深度学习之图像分类(十四)--ShuffleNetV2 网络结构

深度学习之图像分类(十四)ShuffleNetV2 网络结构目录深度学习之图像分类(十四)ShuffleNetV2 网络结构1. 前言2. Several Practical Guidelines for Efficient Network Architecture Design2.1 Equal channel width minimizes memory access cost (MAC).2.2 Excessive group convolution increases MAC.2.3 Networ
原创
发布博客 2021.09.04 ·
15934 阅读 ·
14 点赞 ·
2 评论 ·
92 收藏
加载更多