稀疏表示学习笔记(一)-- 稀疏建模

稀疏表示学习(一)

本次主要学习资料是Duke大学Guillermo Sapiro教授的公开课——Image and video processing, by Pro.Guillermo Sapiro 课程。该课程可以在 Bilibili 上找到学习资源。

本节部分笔记参考 https://www.cnblogs.com/daniel-D/p/3222576.html

1. 稀疏建模介绍 - Sparse Modeling

图像去噪是一个很好的例子来引入稀疏建模。手上有噪声的图像如何变成干净的图片呢?

在这里插入图片描述

该问题可以建模为如下形式: y y y 是含有噪声的图像, x x x 是未知的无噪图像。下式第一项表示不想让恢复图像距离含噪图像太远,这里用图像之间的均方误差作为惩罚。如果加的是高斯噪声,那么这里就是方差。如果只有第一项,那么最优解无非就是带噪图像本身。后一项 G ( x ) G(x) G(x) 被称为先验,也叫正则化项。也就是无噪图像 x x x 具有某些属性、

在这里插入图片描述

第一项称为likelihood,第二项是prior,都可以进行概率解释。假设 x x x 本来是就带有某种先验概率的分布,现在又已知观测值 y y y, 根据贝叶斯原理, 现在 x x x 的分布(后验)正比于先验概率分布与高斯分布的乘积。如果先验概率分布也正是指数分布,将乘积取负对数,就可以得到上述在机器学习里非常常见的 MAP 模型。

现在的问题是:最好的先验 (prior) 究竟是什么? G(x) 应该取什么形式? 定义图像信号的最好空间是什么?

在这里插入图片描述

第一张图, prior 假设 clean image 能量尽量小, x 要尽可能地小。第二张图, prior 认为恢复后的图像要光滑,于是产生了 Laplacian 和 low energy 的结合,朝前进化了一步。第三张图,prior 认为要考虑 edges 是不光滑的,需要不同情况不同处理…… Sparse and Redundant 是正在讨论的问题,目前是最新的进化版本,而后面也有一些算法,虽然也成功进化成人类,可惜太胖了,行动不便,尽管效果很好,但是计算开销太大—— computationally expensive and difficult。 Sparse modeling 的先验究竟是什么?要回答这个问题,还需要了解一些基础概念。


定义:Dictionary is a set of prototype signals (atom).

字典是一个矩阵,它是 n × k n\times k n×k 的,其中 n n n 是信号的维度, k k k 是字典的大小。字典有 k k k 列,每一列称为一个原子,它可以是一种图像,一个 patch。通常 k > n k>n k>n。如果 k > n k>n k>n,我们称其为过完备的(over complete)。如果 k = n k=n k=n,我们称其为完备的(complete),例如傅里叶或者离散余弦变换等。如果 k < n k<n k<n,我们称其为非完备的(under complete)。

向量 α \alpha α 最多有 L L L 个非零元素。 D α D \alpha Dα 其实就是非零原子的线性组合。向量 α \alpha α 非常稀疏。这也是稀疏表示的来源。

在这里插入图片描述

如果字典大小为 k k k,我们选择 L = 3 L = 3 L=3,那么一共有 C ( K , L ) C(K, L) C(K,L) 中选择,每一种选择都会定义一个非常低维的子空间,我们有许多的子空间。

例如 JPEG 图像, D D D cos ⁡ \cos cos 余弦基, α \alpha α 是余弦变换的系数。当我们量化大量离散余弦变幻时,我们看到它们大量系数变为 0。所以仅仅需要几个系数就可以很好地表示一个 8 × 8 8\times 8 8×8 的部分。

下一个问题是:如何测量稀疏度?

衡量稀疏性的方法是 LP-norm。

  • 如果 p = 2 p = 2 p=2,我们就不能真正得到我们想要的东西,因为我们想要的是每当 α \alpha α 的输入项之一不为 0 时,有等额的惩罚。

  • p = 1 p = 1 p=1 时,至少现在的惩罚是成正比的。与系数的大小成线性比例,而不是二次方。

  • 如果 p < 1 p < 1 p<1,如果系数为 0,那么我们真正想要的惩罚为 0,然后只要系数不为 0,惩罚就趋于平缓。

  • 如果 p − > 0 p -> 0 p>0,我们得到的正是我们想要的对所有非零系数有相同的惩罚。

在这里插入图片描述

实际上我们希望不管 x 多大,它非零的惩罚是相同的 L 0 − norm L_0-\text{norm} L0norm正好满足这个要求,它表示的意思是数出 alpha 向量中非零的个数。所以我们测量稀疏度的方法是 L 0 − norm L_0-\text{norm} L0norm

在这里插入图片描述

补充理解

假设字典 A A A 矩阵 K > N K > N K>N,并且是满秩的 (图中是 D D D ),那么对于任意一个 N N N 维的向量 b b b (图中是 x x x ),肯定有 A x = b Ax = b Ax=b。现在加入 Lp-norm 的约束条件,限制只能用少量的 A A A 的列向量 (atoms 作为基,向量 b b b 就被固定在某个 span 内,成为了一个 Lp 优化问题:

在这里插入图片描述

用紫色表示*面,用青色表示 norm 取同一个值的球形(等高线),问题如下:在*面 Ax = b *面内选出 norm 最小的最优解:

在这里插入图片描述

1 ≤ p 1 \leq p 1p 时,norm ball和*面的交点有多个。这是一个凸优化问题,可以用拉格朗日乘子来解决这个问题。

0 < p < 1 0 < p < 1 0<p<1 时, norm ball 可行解十分稀疏,是一个非凸优化问题,解决这类问题很难,但是却有很好的稀疏性。

p = 0 p = 0 p=0 时, norm ball 上的点除了坐标轴,其他部分无限收缩,与*面的交点在某一个坐标轴上,非零系数只有一个。

回到之前讲的 MAP 模型, Sparse Modeling 模型就是非零系数限制在 L L L 个之内(意味着解在至多 L L L 个 atoms 组成的 span 里),尽可能接近**面:


回到图像去噪问题,图像的最大后验估计使我们想要的是什么?

在这里插入图片描述


还有一些问题有待解决:这个优化问题怎么计算呢?

  • 可以在满足 ∣ ∣ D α − y ∣ ∣ 2 2 ≤ ϵ 2 ||D\alpha - y||_2^2 \leq \epsilon^2 Dαy22ϵ2 的情况下找最少非零元表示的 α \alpha α
  • 可以约束条件结合起来形成 λ ∣ ∣ α ∣ ∣ 0 0 + ∣ ∣ D α − y ∣ ∣ 2 2 \lambda||\alpha||_0^0 + ||D\alpha - y||^2_2 λα00+Dαy22

这三个是等效的

另一个问题是得到的 α \alpha α 唯一吗?我们选哪个 α \alpha α

还有一个问题是,我们选选择哪个字典呢?

在这里插入图片描述


2. 总结:

在这里插入图片描述

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木卯_THU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值