Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and

Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search

基于蜂群优化,模糊c均值和模式搜索的视网膜血管定位方法

摘要

背景 视网膜中血管网络的状况是诊断与眼睛相关的各种问题(如糖尿病性视网膜病)的重要部分。
方法 在这项研究中,提出了一种利用模糊c均值聚类和水平集的自动视网膜血管分割方法。利用对比度受限的自适应直方图均衡化来增强视网膜图像的对比度,同时通过使用数学形态来减少噪声,然后通过匹配的颤振步骤来降低噪声,该滤波步骤使用Gabor和Frangi滤波器在聚类之前增强血管网络。然后使用遗传算法增强的空间模糊c均值方法提取初始血管网络,并通过使用集成的水平集方法进一步细分。
结果 通过使用公众可访问的数字视网膜图像进行血管提取,对视网膜的结构化分析以及英格兰儿童心脏与健康研究(CHASE_DB1)数据集,对所提出的方法进行了验证。这些数据集通常用于对视网膜血管分割方法的准确性进行基准测试,结果表明其平均精度分别 0.961、0.951和0.939。
结论 所提出的分割方法能够达到与其他方法相当的准确性,同时非常接近第二位观察者在所有数据集中提供的手动分割。
关键字 视网膜血管分割 配对滤波 模糊c均值聚类 水平集 Frangi滤波 Gabor滤波

1引言

利用计算机辅助诊断眼底图像已成为由专家(称为直接检眼镜)手动检查眼底的一种替代方法。此外,计算机辅助诊断眼底图像与直接眼科检查一样可靠,并且需要更少的时间进行处理和分析。通常会通过利用视网膜眼底图像来诊断可能导致失明的各种与眼睛相关的病理,例如黄斑变性和糖尿病性视网膜病[1]。诊断糖尿病性视网膜病变的基本步骤之一是从眼底图像中提取视网膜血管。尽管已经提出了几种分割方法,但是由于视网膜脉管系统网络和图像质量的变化,这种分割仍然具有挑战性。当前,视网膜血管分割中的主要挑战是噪声(通常是由于照明不均匀所致)和血管变薄。此外,大多数提议的分割方法集中于针对每个数据集分别优化预处理和血管分割参数。因此,这些方法对于优化的数据集通常可以实现较高的准确性,而如果将其应用于其他数据集,则准确性会降低。尽管血管分割方法通常包含旨在增强血管外观的预处理步骤,但某些方法会跳过预处理步骤,而是从分割步骤开始。
如今,许多分割方法都依赖于机器学习概念并结合了传统的分割技术,以通过提供数据的统计分析来支持分割算法,从而提高其方法的分割精度。基于标记训练数据的使用,可以将这些机器学习概念大致分为无监督和受监督的方法。在有监督的方法中,图像中的每个像素都由人工操作人员(即血管和非血管)进行标记并分配给一个类别。从正在处理的数据中生成一系列特征向量(图像分割问题中的逐像素特征),并通过使用分配给数据的标签来训练分类器。在无监督的方法中,如果相似的样本在不同的类别中收集,则使用没有任何类别标签的预定义特征向量。该聚类基于关于输入数据的结构的一些假设,即,两类输入数据,其中每一类的特征矢量彼此相似(容器而不是血管)。基于该问题,该相似性度量可能很复杂,也可能由一个简单的度量(例如像素强度)来定义。
在此手稿中,对视网膜血管分割方法进行了简要讨论,以提供对不同方法的一些见识,而绝不是对这些方法的详尽综述。关于不同的血管分割方法的详细讨论,请参考[2]。 Niemeijer等人[3]提出了一种有监督的视网膜血管分割方法,其中通过使用基于多尺度高斯滤波器构造的特征向量,利用k最近邻(k-NN)分类器来识别血管和非血管像素。 Staal等人[4]提出了一种类似的方法,该方法利用了通过使用脊线检测器构造的特征向量。 Soares等人基于使用多尺度Gabor小波滤波器构造的特征向量进行分析。 [5]提出使用贝叶斯分类器来分割血管和非血管像素。 Marín等人[6]通过利用使用不变矩特征的计算特征,提出了一种基于神经网络(NN)的分类器。 Fraz等人[7]提出了使用基于增强决策树的分类器对视网膜血管进行分割。同时,Ricci和Perfetti [8]通过利用支持向量机与使用旋转不变线性算子得出的特征相结合,提出了一种分类器。
与有监督的方法相比,使用无监督的分割方法的主要优点是它与标记的训练数据无关。在通常包含大数据的医学成像和相关应用程序中,这可被视为重要方面。对于医学专家而言,手动标记数据集中的不同结构将是一项繁琐的任务。流行的无监督视网膜血管分割方法可归类为血管跟踪匹配滤波和基于形态学的方法。从手动或自动定义的一组初始点开始,船只跟踪方法尝试通过跟踪船只的中心线来对船只进行分段。可以通过利用不同的血管估计轮廓(例如高斯[9],通用参数[10],贝叶斯概率[11]和多尺度轮廓[12])来完成此跟踪。 Yin等人提出了基于血管跟踪的血管分割方法的最早例子之一。 [13]基于最大后验(MAP)技术。通过使用强度和容器连续性的统计分析确定对应于中心线和容器边缘的初始播种位置。然后通过使用应用于血管横截面强度分布的高斯曲线拟合函数来估计血管边界。 Zhang等人[14]通过将MAP技术与多尺度线检测算法相结合,提出了一种类似的方法,其中他们的方法能够以良好的性能处理血管树分支和交叉点。
基于可以使用内核(构造元素)对血管轮廓进行建模的概念,滤波概念尝试通过将视网膜图像与2D旋转模板进行卷积来对血管进行建模和分割。旋转模板用于在尽可能多的方向上逼近容器轮廓(称为颤振响应),在容器适合内核的位置中,响应最高。基于过滤的技术利用不同的内核来建模和增强视网膜血管,例如匹配过滤器[15],高斯过滤器[16],小波过滤器[17、18],Gabor过滤器[5]和COSFIRE过滤器[19、20]。利用形态学操作的方法可用于增强视网膜图像,以与其他分割方法一起使用或从背景分割血管[21]。最近,基于可变形模型的分割(即,水平集和活动轮廓)已经引起了视网膜血管分割的兴趣[22-26]。 Chaudhuri等。 [27]提出了基于颤振的视网膜血管分割方法的最早实例之一,该方法通过使用12个模板对血管轮廓进行建模。 Wang等[18]后来扩展了使用多小波核[27]提出的方法,从而获得了更高的分割精度。 Kovacs等[28]提出了结合轮廓重建技术将Gabor滤波器用于分割血管的方法。 Kande等[29]提出了一种使用空间加权模糊c均值聚类算法的血管分割方法,其中使用匹配滤波来增强视网膜血管。
数学形态学被认为是图像处理中的基本概念之一,可用于从图像增强到分割的任何地方。尽管数学形态学主要用于视网膜血管增强,但也可以用于血管分割。 Fraz等人[30]提出使用高斯滤波器的第一阶导数来初始增强视网膜血管中心线,然后使用多方向形态学Tophat变换来分割血管。 BahadarKhan等人[31]提出了广义线性模型(GLM)和Frangi过滤器,结合用于分割血管的矩保持阈值来增强视网膜图像中的血管。 Sigurosson等。 [32]提出了一种混合方法,该方法使用了路径开放滤波器,然后是基于模糊集理论的数据融合方法,并且他们提出的方法能够在较薄的血管中实现良好的分割精度。 Roychowdhury等。 [33]提出了一种自适应的全局阈值化方法,该方法使用了一种新的步进标准进行视网膜血管分割,在分割细血管方面具有可喜的结果。 Mapayi等人[34]提出了一种方法,该方法使用基于CLAHE的血管增强和全局图像阈值方法,方法是应用相位一致性来分割视网膜图像中的血管。 Mapayi等人[35]提出通过利用通过灰度共生矩阵计算的能量特征来自适应阈值化视网膜图像中的血管,该阈值可用于绿色通道或灰度级视网膜图像中的血管分割。
当前,机器学习算法通常被用作支持工具,以通过对由其他细分方法生成的一组数据进行统计分析来自动化和/或增强大多数细分方法。因此,可以通过采用和集成机器学习概念来增强任何现有的无监督分割算法。通常通过使用属于各种图像处理概念的几种分割算法的整个流程来解决复杂的分割任务和问题。**本文提出了一种基于混合技术的视网膜底图像血管自动提取方法,该方法包括遗传算法,增强的空间模糊c均值算法和基于实际临床数据的综合水平集方法。**此外,随着每个滤波器以独特的方式响应图像中的不同像素,利用滤波器的组合来增强分割。考虑到数据集之间不同的图像特征,可以通过组合滤波器使分割方法更鲁棒。由于本研究的目的是提出一种适用于各种数据集的最佳分割方法,因此该方法并未针对任何特定数据集进行优化。本文的其余部分安排如下:第2节概述了提出的方法和数据集,第3节讨论了该方法的性能,第4节得出了结论。

2 材料和方法

在这项研究中,利用了RGB眼底图像的绿色通道,因为已显示血管相对于绿色通道的背景具有最高的对比度,而使用蓝色通道会导致较小的动态范围,而红色通道则提供了不足的对比度,如图1所示。此外,Mendonca和Campilho [36]通过比较RGB图像的不同通道,国家电视系统委员会(NTSC)色彩空间的亮度通道和RGB图像的’a’分量,进一步验证了绿色通道的有用性。 “实验室”图像表示系统,其中RGB图像的绿色通道显示为具有更好的整体对比度。此外,像大多数其他研究一样,仅考虑图像视场(FOV)内的像素进行分割,因为该区域之外的像素被视为背景并且没有已知的医学应用。图2说明了该方法的流程图。以下各节将详细讨论这些步骤。

2.1数据集

可用于血管提取(DRIVE)的可公开获取的数字视网膜图像[4],视网膜的结构化分析(STARE)[37]和英格兰儿童心脏与健康研究(CHASE_DB1)CHASE_DB1 [38]数据集是其中最多的 流行的数据集,用于开发和测试各种视网膜分割方法的性能。 所使用的数据集还提供了由不同专家手动完成的相应血管分割,并被视为真实血管分割。 在这里插入图片描述

在这里插入图片描述
DRIVE数据集包括40个彩色眼底图像,这些图像被均分为训练和测试集。 对于数据集中的每个图像,都提供了FOV蒙版以及相应血管树的手动专家分割(训练集的一名专家和测试集的两名专家)。 佳能CR5非散光相机的FOV为45°,位深度为8位,用于捕获分辨率为768×584像素的图像。 图3显示了来自测试装置的图像及其相应的手动血管分割。
STARE数据集包括20幅彩色眼底图像,其中一半包含不同病理征象。 对于数据集中的每个图像,提供了由两名专家完成的相应血管树的手动分割。 使用佳能TopCon TRV-50眼底照相机,其FOV为35°,位深度为8位,以700×605像素的分辨率捕获图像。 图4说明了来自此数据集的图像及其相应的手动血管分割。
CHASE_DB1数据集包括来自28位来自英格兰儿童心脏和健康研究的患者的彩色眼底图像。 对于数据集中的每个图像,提供了由两名专家完成的相应血管树的手动分割。 使用FOV为30度,位深度为8位的Nidek NM 200D眼底相机捕获分辨率为1280×960像素的图像。
在这里插入图片描述

图5显示了来自此数据集的图像及其相应的手动血管分割。
从样本图像可以看出,地面真相分割可以被认为是高度主观的,因为由DRIVE和CHASE_DB1数据集中的第一个观察者提供的手动分割包括对较细血管的更精细的分割,而与由第二个观察者提供的手动分割的STARE数据集相反 包括更精细的细分。

2.2绩效指标

Sensitivity Specificity Accuracy AUC
应当注意的是,AUC为0.50或更小意味着分割纯粹是基于随机猜测并且没有用,而AUC为1意味着分割算法能够正确分割所有像素

2.3预处理

首先,使用3×3中值滤镜过滤从原始眼底图像中提取的绿带,以减少图像噪声。 由于视网膜眼底图像在图像边缘附近显示出高对比度,导致在图像边缘附近检测到假阳性血管,并且使用[19]提出的方法对边缘进行了平滑处理。 通过对从原始RGB眼底图像计算出的CIElab颜色空间[42]上的亮度通道进行阈值计算来计算初始FOV蒙版。 然后,将掩模迭代地扩大一个像素,在该像素中,将新像素的值作为其8个连接的相邻像素的平均值进行计算。 重复此过程50次,以确保在FOV边界附近不会检测到假血管。
然后,使用对比限制自适应直方图均衡(CLAHE)算法[43]来增强血管和背景之间的对比,将裁剪限制的经验值设置为0.0023。 CLAHE通过不过度放大相对均匀区域中存在的噪声来改善局部对比度,并且已在许多视网膜血管分割方法中使用。 接下来,通过使用半径为8个像素的圆形结构元使图像进行形态学开操作来抑制噪声。 最后,通过结合使用图6所示的顶帽和底帽操作,进一步增强了图像。
在这里插入图片描述

2.3.1 Gabor滤波

为了增强图像内部的小血管,使用了基于Gabor小波的滤波器。 对于2D图像(空间Gabor滤波器),卷积用于应用Gabor滤波器,其中将变化的内核定义为由正弦波调制的高斯内核[44]。 通过使用笛卡尔基础作为中心,基于方向为θ的横坐标定义了这些内核。 高斯和正弦分量的
Gabor的过滤器K可以独立定制:
在这里插入图片描述

其中,高斯分量由其偏差σ定制,而定义圆形高斯椭圆率的空间纵横比γ则由空间波长λ和相位customized来定制。 通过使用方向θ来表示Gabor的内核,并通过像素大小(vx,vy)和内核中心的平移(ic,jc)定义比例的变化:
在这里插入图片描述
在这里插入图片描述
Gabor内核由具有不同权重的平行条纹组成,在椭圆形的信封内,内核参数控制这些条纹的大小,方向和位置。以像素为单位指定的波长λ代表颤振的波长。该值用于缩放条纹,而通过修改波长,修改条的整体大小,使条保持在相同的方向和相对尺寸。该波长应大于2,并且通常选择小于图像尺寸的五分之一(因为图像边界的影响)。平行条纹的角度通过使用方向θ来指定。通过修改θ,内核可以旋转并定向在所需位置。余弦因数的偏移由相位偏移represented表示。籽粒的对称性由determined决定,而通过改变位移,抑制性条带和兴奋性条带的位置发生改变。对于kernel = 0的相移,核是对称的;对于ϕ =π/ 4的相移,核是不对称的。椭圆率用纵横比γ表示。对于1的比例,支撑是圆形的,而较大的比例将导致较小但较高(条数)的条带,较小的比例将导致较长的条带。类似于动物视觉系统,带宽b被用来代替高斯偏差σ[45]。经过Gabor滤波后,通过从具有大核的中值滤波图像中减去滤波图像,然后通过形态学Top-hat滤波,通过使用半径为8像素的圆形结构元素来增强血管结构,来计算并去除图像背景。

2.3.2 Frangi过滤

Frangi过滤器[46]最初被建议通过增强血管轮廓在冠状动脉分割中使用。 基于Hessian矩阵的Frangi flter是一种流行的方法,既有效又需要更少的计算时间[47]。 通过计算图像的二阶导数的垂直和水平对角线来构造Hessian矩阵。 基于Hessian的容器度过滤器可以定义为:

公式

选择平滑参数σ,使其以0.1为增量在1到4之间变化,因为它提供了最佳的总体血管增强效果。 选择较小的σ值将丢失一些较粗的血管细节,而选择固定的较大σ值将丢失较细的血管细节。 通过更改平滑参数σ并保留不同比例的最大像素值,可以确保增强血管并尽可能保留细节。 图7说明了样本图像上σ的不同值所导致的血管增强,图8显示了匹配的滤波步骤及其对图像的影响。
在这里插入图片描述
在这里插入图片描述

2.4模糊聚类

Zadeh [48]引入的模糊集定理及其对Bezdek [49]的图像处理的适应性是最常用和研究最多的图像分割算法之一。在这项研究中,使用了软聚类(模糊c均值),因为每个像素根据隶属度可以属于多个聚类,与硬聚类相比,在对比度差,区域重叠和区域对比度不均匀的图像中可以获得更好的性能聚类(k均值),其中每个像素都属于一个聚类。提出了基于聚类的机器学习方法的使用,因为它不依赖于标记的训练数据。在基于聚类的机器学习方法中,只有一组特征向量,没有任何类别标记,因为这些方法在聚类中收集了相似的样本。作为传统的模糊c均值(FCM)算法,仅基于图像强度进行聚类对噪声非常敏感,许多研究人员提出在像素之间添加空间关系以提高性能[50,51]。

2.4.1 Fuzzy c‑Means Algorithm

2.4.2遗传算法增强的模糊c均值算法

FCM算法的主要缺点是其意图陷入局部极小,元启发式方法,例如遗传算法(GA),禁忌搜索(TS),模拟退火(SA),基于蚁群的优化(ACO)及其混合许多研究人员提出了克服这些限制的建议[51-54]。元启发式算法可以在嘈杂的图像上表现良好,并且它们的初始解决方案通常非常接近最佳聚类中心[55]。受进化论和自然选择的启发,Srinivas提出了遗传优化[56],它是一种基于种群的随机优化算法,其中每个染色体都可以代表具有代表FCM簇中心的基因序列的解决方案。每个后继种群是根据基于ftness函数的fttest染色体的生存和繁殖而创建的,基于基于迭代次数或达到最佳ftness函数的终止标准的[57]。为了产生初始种群P,FCM运行n次,产生大小为C(簇数)的染色体。之后,根据以下条件选择最常见的染色体:
.,.,.

2.5 水平集细化
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值