动态规划-嵌套矩阵问题

本文介绍了如何使用动态规划解决嵌套矩阵问题,将矩形间的可嵌套关系建模为有向无环图(DAG),并求解DAG上的最长路径。通过状态转移方程和记忆化搜索策略,计算每个节点出发的最长路径长度,以找到最优解。在找到最长路径的同时,还需要确保解决方案的矩形编号字典序最小。
摘要由CSDN通过智能技术生成

有向无环图上的动态规划是学习动态规划的基础。很多问题都可以转化为DAG上的最长路、最短路或路径计数问题。

嵌套矩阵问题。有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。如果有多解,矩阵编号的字典序应该尽量小。

矩阵之间的可嵌套关系是一个典型的二元关系,二元关系可以用图来建模。如果矩阵X可以嵌套在矩阵Y里,就从X到Y连一条有向边。这个有向图是无环的,因为一个矩阵无法直接或间接地嵌套在自己内。换句话说,它是一个DAG。这样,所要求的便是DAG上的最长路径。

如何求DAG中不固定起点的最长路径呢?仿照数字三角形的做法,设d(i)表示从结点i出发的最长路长度,应该如何写状态转移方程呢?第一步只能到它的相邻点。因此:

d(i) = max \left \{ d(j) + 1|(i,j)\in E \right \}

其中,E为边集。最终答案是所有d(i)中的最大值。根据前面的介绍,可以尝试按照递推或记忆化搜索的方式计算上式。不管怎样

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值