西瓜书——对数几率回归(知识点:极大似然估计)

本文详细介绍了对数几率回归在二分类问题中的应用,首先阐述了对数几率回归的广义线性模型推导,明确了伯努利分布和指数族分布的关系。接着通过极大似然估计方法,逐步解析了如何建立和优化模型,最终得到损失函数,并提及使用梯度下降或牛顿法进行参数求解。
摘要由CSDN通过智能技术生成

对数几率回归是二分类的问题,我们可以将随机变量 y y y假设服从伯努利分布,即 y y y的取值只有{0,1}。
这里需要补充一个概念,指数族分布,伯努利分布就属于指数族分布。在这里插入图片描述在这里插入图片描述
(注: ϕ \phi ϕ指的是 y y y取1是的概率)
我们都明白对数几率回归是从线性回归衍生而来的,所以我们下一步就是进行对数几率回归模型的推导。

1、 对数几率回归的广义线性模型推导

对于广义线性模型,有三条假设。在这里插入图片描述
符合这三条假设的模型便是广义线性模型了。
对于假设一,我们的随机变量符合伯努利分布所以成立。
对于假设二,我们设:
h ( x ) = E ( T ( y ) ) h(x)=E(T(y)) h(x)=E(T(y)),又因为伯努利分布中 T ( y ) = y T(y)=y T(y)=y
所以 h ( x ) = E ( y ) = 1 ⋅ p ( y = 1 ) + 0 ⋅ p ( y = 0 ) = ϕ h(x)=E(y)=1\cdot p(y=1)+0 \cdot p(y=0)=\phi h(x)=E(y)=1p(y=1)+0p(y=0)=ϕ
对于假设三,因为 η = ln ⁡ ( ϕ 1 − ϕ ) \eta=\ln(\frac{\phi}{1-\phi}) η=ln(1ϕϕ),所以我们可以得到 ϕ = 1 1 + e − η \phi=\frac{1}{1+e^{-\eta}} ϕ=1+eη1
因为 η = w T x \eta=w^Tx η=wTx,所以 h ( x ) = ϕ = 1 1 + e − η = 1 1 + e − w T x = p ( y = 1 ∣ x ) h(x)=\phi=\frac{1}{1+e^{-\eta}}=\frac{1}{1+e^{-w^Tx}}=p(y=1|x) h(x)=ϕ=1+eη1=1+ewT

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值