hongbin_xu的博客

新的起点,不忘初心
私信 关注
hongbin_xu
码龄4年

一个苦逼的学生狗,生物特征识别与模式识别

  • 1,268,598
    被访问量
  • 162
    原创文章
  • 3,116
    作者排名
  • 2,488
    粉丝数量
  • 于 2017-01-18 加入CSDN
获得成就
  • 获得905次点赞
  • 内容获得855次评论
  • 获得3,173次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #神经网络#图像处理#机器学习#TensorFlow#Python#深度学习#视觉/OpenCV#算法#PyTorch
TA的专栏
  • 机器学习笔记
    13篇
  • 数字图像处理学习
    24篇
  • 论文笔记
    33篇
  • Python dlib学习
    13篇
  • acm刷题
    3篇
  • LeetCode
  • Python
    28篇
  • OpenCV
    23篇
  • STM32
    4篇
  • 四旋翼无人机
    4篇
  • zedboard
    10篇
  • verilog
    1篇
  • linux
    6篇
  • 机器学习
    30篇
  • 数字图像实验
    23篇
  • 图像处理
    26篇
  • caffe
    17篇
  • 杂谈
    1篇
  • deeplearning.ai课程作业
    17篇
  • PCL点云库学习
    1篇
  • 三维重建
    6篇
  • 树莓派
  • 论文阅读
    33篇
  • 深度学习
    33篇
  • Kinect
    7篇
  • c++
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

论文笔记:GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition

GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition1、四个问题要解决什么问题?3D shape recognition。用了什么方法解决?采用多视图(multi-view)的方法。在MVCNN的基础之上,提出了group-view convolutional neural netwo...
原创
2021阅读
2评论
2点赞
发布博客于 2 年前

论文笔记:KD-Net

Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models1、四个问题要解决什么问题?3D点云识别任务。用了什么方法解决?参考KD树的结构,提出了一种新的树形结构的神经网络,用来处理不规则的点云数据。效果如何?在形状分类任务、形状检索任务以及形状部件分割任务中都取得了...
原创
1634阅读
2评论
2点赞
发布博客于 2 年前

论文笔记:PRIN: Pointwise Rotation-Invariant Networks

PRIN: Pointwise Rotation-Invariant Networks1、四个问题要解决什么问题?使用特殊结构的神经网络来提取具有旋转不变性的点云特征。用了什么方法解决?提出了一套新的网络结构:Pointwise Rotation-Invariant Network(PRIN),所提取的特征具有旋转不变性。预处理阶段,使用密度感知自适应采样(Density-A...
原创
1354阅读
0评论
1点赞
发布博客于 2 年前

论文笔记:Group Equivariant Convolutional Networks

Group Equivariant Convolutional Networks1、四个问题要解决什么问题?对卷积神经网络进行扩展,并提出一个在特定的变换(旋转、平移等,也可表示为一个特殊的群)下具有等变性的网络。用了什么方法解决?提出了一种新的卷积神经网络结构——群等变卷积神经网络(Group equivariant Convolutional Neural Network)...
原创
2942阅读
0评论
5点赞
发布博客于 2 年前

论文笔记:Spherical CNN

Spherical CNN1、四个问题要解决什么问题?3D场景下旋转不变性特征的提取。用了什么方法解决?提出了球形卷积操作,也叫作球形互相关(spherical cross-correlation)。球形卷积具有旋转不变性。为了增强计算效率,使用FFT(Fast Fourier Transform)来计算球形卷积。效果如何?在3D模型识别上效果还不错,与其他深度神经...
原创
1523阅读
0评论
2点赞
发布博客于 2 年前

论文笔记:Semi-Supervised Classification with Graph Convolutional Networks

Semi-Supervised Classification with Graph Convolutional Networks1、四个问题要解决什么问题?半监督任务。给定一个图,其中一部节点已知标签,剩下的未知,要对整个图上的节点进行分类。用了什么方法解决?提出了一种卷积神经网络的变种,即提出了一种新的图卷积方法。使用谱图卷积(spectral graph convolut...
原创
8704阅读
0评论
12点赞
发布博客于 2 年前

论文笔记:CycleGAN

CycleGAN1、四个问题要解决什么问题?图像翻译任务(image-to-image translation problems),域转换任务。用了什么方法解决?提出了CycleGAN的网络结构。目的是:通过使用一组对抗损失,学习到一个映射G:X→YG: X \rightarrow YG:X→Y,使得生成的样本G(X)G(X)G(X)的分布难以跟真实样本YYY的分布区分开来。...
原创
1136阅读
0评论
1点赞
发布博客于 2 年前

论文笔记:Geo-CNN

Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNNGeoCNN1、四个问题要解决什么问题?3D点云具有不规则的结构,不能输入普通的CNN中。因此,要提出可以直接将点云作为输入的CNN网络。许多研究对局部几何信息特征提取的关注太少,还要能对局部区域的点的几何结构进行建模。用了什么方法解决?提出...
原创
2894阅读
2评论
1点赞
发布博客于 2 年前

论文笔记:MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional NetworksMTCNN1、四个问题要解决什么问题?人脸检测(face detection)和人脸对齐(face alignment)。用了什么方法解决?提出了一个深度级联网络结构,分成了三个阶段,从粗到精对人脸进行检测、定位...
原创
1071阅读
1评论
2点赞
发布博客于 3 年前

论文笔记:DGCNN(EdgeConv)

Dynamic Graph CNN for Learning on Point CloudsDGCNN1、四个问题要解决什么问题?使用深度学习处理3D点云。设计一个可以直接使用点云作为输入的CNN架构,同时可以获取足够的局部信息,可适用于分类、分割等任务。用了什么方法解决?提出了一个新的神经网络模块——EdgeConv。EdgeConv是可微的,并能嵌入已有的...
原创
19887阅读
15评论
16点赞
发布博客于 3 年前

论文笔记:Image Caption(Show, attend and tell)

Show, Attend and Tell: Neural Image Caption Generation with Visual AttentionShow, Attend and Tell1、四个问题要解决什么问题?Image Caption(自动根据图像生成一段文字描述)。用了什么方法解决?在Show and Tell提出的Encoder-Decoder架构的基础之上...
原创
1932阅读
3评论
5点赞
发布博客于 3 年前

论文笔记:Image Caption(Show and Tell)

Show and Tell: A Neural Image Caption GeneratorShow and Tell1、四个问题要解决什么问题?Image Caption(自动根据图像生成一段文字描述)。用了什么方法解决?作者提出了一个基于深度循环架构的生成式模型。训练时的目标是最大化这个从输入图像到目标描述语句的似然。效果如何?所提出模型在几个数据集上的效果...
原创
1699阅读
0评论
0点赞
发布博客于 3 年前

论文笔记:PointNet

PointNet: Deep Learning on Point Sets for 3D Classification and SegmentationPointNet1、四个问题要解决什么问题?3D点云是一种很重要的几何数据结构。由于其存在空间关系不规则的特点,因此不能直接将已有的图像分类分割框架套用到点云上。许多研究者会将3D点云转换为3D体素(voxel grids )或者一系...
原创
2424阅读
1评论
3点赞
发布博客于 3 年前

论文笔记:ShuffleNet v2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture DesignShuffleNet v21、四个问题要解决什么问题?轻量化模型。用了什么方法解决?文中提出了几条设计轻量化模型的实践准则(guidelines)。Guideline 1:输入通道数与输出通道数保持相等可以最小化内存访问成...
原创
1315阅读
2评论
0点赞
发布博客于 3 年前

论文笔记:ShuffleNet v1

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile DevicesShuffleNet v11、四个问题要解决什么问题?为算力有限的嵌入式场景下专门设计一个高效的神经网络架构。用了什么方法解决?使用了两个新的操作:pointwise group convolution(组卷积)和...
原创
926阅读
0评论
0点赞
发布博客于 3 年前

论文笔记:Git Loss

原文:Git Loss for Deep Face RecognitionGit Loss1、四个问题要解决什么问题?诸如人脸识别、指纹识别等的识别任务,测试集不确定或类别较多而样本较少的情况。one-shot-learning。最小化类内差异,最大化类间差异。用了什么方法解决?提出了一个新的loss函数——git loss。git loss是基于center loss...
原创
589阅读
1评论
0点赞
发布博客于 3 年前

论文笔记:Distilling the Knowledge

原文:Distilling the Knowledge in a Neural NetworkDistilling the Knowledge1、四个问题要解决什么问题?神经网络压缩。我们都知道,要提高模型的性能,我们可以使用ensemble的方法,即训练多个不同的模型,最后将他们的结果进行融合。像这样使用ensemble,是最简单的能提高模型性能的方法,像kaggle之类的...
原创
838阅读
0评论
1点赞
发布博客于 3 年前

论文笔记:DeepID2

Deep Learning Face Representation by Joint Identification-VerificationDeepID21、四个问题要解决什么问题?人脸识别。主要挑战是,设计一套方法能够有效地减少类内差异,并增大类间差异。用了什么方法解决?使用face identification(人脸分类)和face verification(人脸验证)...
原创
662阅读
0评论
0点赞
发布博客于 3 年前

论文笔记:MobileFaceNet

原文:MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile DevicesMobileFaceNet1、四个问题要解决什么问题?设计一个在手机或嵌入式设备上可实时运行且具有高精度的人脸验证CNN模型。用了什么方法解决?以MobileNet v2网络为骨架,做了一些改进...
原创
2858阅读
0评论
1点赞
发布博客于 3 年前

论文笔记:ZFNet

ZFNet1、四个问题要解决什么问题?卷积神经网络具有很好的效果,在ImageNet上取得了开创性的成果,但是我们对其却没有一个直观的认识,以及它为何效果这么好,全当成黑盒子来用。用了什么方法解决?提出了一个新的卷积神经网络可视化技术,来辅助观察中间层以及最后的分类层的输出特征图。提出了ZFNet,并应用了反卷积技术来做可视化。效果如何?ZFNet的效果在Image...
原创
886阅读
0评论
3点赞
发布博客于 3 年前

论文笔记:ResNet v2

ResNet v21、四个问题要解决什么问题?进一步提高ResNet的性能。解释为何Identity mapping(恒等映射)的效果会比较好。用了什么方法解决?提出了一个新的残差单元结构。从理论和实验上分析了identity mapping的有效性。效果如何?使用1001层的ResNet,在CIFAR-10数据集上错误率为4.62%,在CIFAR-100数据集上...
原创
559阅读
0评论
0点赞
发布博客于 3 年前

论文笔记:FCN

原文:Fully Convolutional Networks for Semantic SegmentationFCN1、四个问题要解决什么问题?语义分割。用了什么方法解决?提出了“全卷积神经网络”,可以接收任意尺寸的输入,并给出对应大小的输出。使用一些图像分类模型(如:AlexNet、VGG、GoogLeNet)等做迁移学习。使用skip architecture的...
原创
758阅读
0评论
0点赞
发布博客于 3 年前

论文笔记:Inception v1

原文:Going Deeper with ConvolutionsInception v11、四个问题要解决什么问题?提高模型的性能,在ILSVRC14比赛中取得领先的效果。最直接的提高网络性能方法有两种:增加网络的深度(网络的层数)和增加网络的宽度(每层的神经元数)。这样的做法有如下两个缺点待改进:构建更大的网络也意味着会有更多的参数,这也会让网络更容易过拟合。同时也会需要更...
原创
851阅读
1评论
1点赞
发布博客于 3 年前

论文笔记:YOLO

原文:You Only Look Once: Unified, Real-Time Object DetectionYOLO1、四个问题要解决什么问题?对于目标检测任务来说,速度较快的算法性能较弱,然而性能较强的算法(如:R-CNN系列)耗时则更多,很难达到实时性的要求。大多数像RCNN这类的算法流程是,第一步先获取候选区域(region proposal),接着进行后处理(消除重...
原创
486阅读
0评论
0点赞
发布博客于 3 年前

论文笔记:PointSIFT

原文:PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic SegmentationPointSIFT1、四个问题要解决什么问题?3D点云感知通常包含了三大任务:3D物体分类,3D目标检测,以及3D语义分割。在三个大任务中,3D点云的语义分割相对更具挑战性,也是这篇论文所要解决的问题。用了什么办法解决...
原创
6233阅读
3评论
6点赞
发布博客于 3 年前

论文笔记:Triplet Network

原论文:DEEP METRIC LEARNING USING TRIPLET NETWORKTriplet Network1、四个问题要解决什么问题?实质上,Triplet Network是Siamese Network的一种延伸,要解决的问题与Siamese Network的基本一致。与Siamese Network一样,适用于解决样本类别很多(或不确定),然而训练数据集的样本数又...
原创
7242阅读
2评论
6点赞
发布博客于 3 年前

论文笔记:MobileNet v2

原论文:MobileNetV2: Inverted Residuals and Linear BottlenecksMobileNet v21、四个问题要解决什么问题?与MobileNet v1所要解决的问题一样,为嵌入式设备或算力有限的场景下设计一个有效的模型。用了什么方法解决?一方面,沿用了再MobileNet v1中采用的depthwise separable conv...
原创
1068阅读
0评论
1点赞
发布博客于 3 年前

论文笔记:PPFNet

原论文:PPFNet: Global Context Aware Local Features for Robust 3D Point MatchingPPFNet1、四个问题要解决什么问题?在3D视觉中,3D几何信息的局部描述子在许多任务中扮演了很重要的角色,诸如:对应性估计、匹配、配准、物体检测以及形状恢复等。尽管近10年间,出现了一系列手工设计(hand-craft)的3D特征描...
原创
2262阅读
3评论
3点赞
发布博客于 3 年前

论文笔记:MobileNet v1

原文:MobileNets: Efficient Convolutional Neural Networks for MobileVision ApplicationsMobileNet v11、四个问题要解决什么问题?在现实场景下,诸如移动设备、嵌入式设备、自动驾驶等等,计算能力会受到限制,所以本文的目标就是构建一个小且快速(small and low latency)的模型。...
原创
7197阅读
1评论
7点赞
发布博客于 3 年前

论文笔记:残差神经网络(ResNet v1)

ResNet v11、四个问题要解决什么问题?/ 用了什么办法解决?理论上来说,深层网络的效果至少不会比浅层网络差。对于浅层网络A,深层网络B,假设B的前面部分与A完全相同,后面部分都是恒等映射,这样B至少也会与A性能相同,不会更差。在深层网络中存在梯度消失/梯度爆炸(vanishing/exploding gradients)。归一初始化(normalized init...
原创
9182阅读
1评论
4点赞
发布博客于 3 年前

论文笔记:孪生神经网络(Siamese Network)

Siamese Network原文:《Learning a Similarity Metric Discriminatively, with Application to FaceVerification》1、四个问题要解决什么问题?用于解决类别很多(或者说不确定),然而训练样本的类别数较少的分类任务(比如人脸识别、人脸认证)通常的分类任务中,类别数目固定,且每类下的样本数也较多(...
原创
35200阅读
10评论
13点赞
发布博客于 3 年前

Eigen库基本操作

Eigen 矩阵定义 #include <Eigen/Dense> Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d. Matrix<double, 3, Dynamic> B; // Fixed ro...
转载
754阅读
0评论
0点赞
发布博客于 3 年前

Kinect学习(七):综合提取彩色、深度、人体骨骼点

前言前面的博客中介绍了如何通过Kinect获得彩色图像、深度图像以及人体骨骼点:Kinect学习(三):获取RGB颜色数据Kinect学习(四):提取深度数据Kinect学习(五):提取带用户ID的深度数据Kinect学习(六):提取人体关节点数据这次要将这几者综合起来,同时从Kinect那里拿来这些数据。代码这里的代码只是将前面几篇博客中的内容整合了一下,就不做过多...
原创
3186阅读
8评论
2点赞
发布博客于 3 年前

Kinect学习(六):提取人体关节点数据

前言Kinect可以通过处理深度数据来得到人体各个关节点的位置坐标,比如:头、手、脚等等。下面是人体的20个关节点的示意图: 这篇学习笔记的目标就是通过Kinect获取人体的骨骼点数据。代码#include <Windows.h>#include <iostream>#include <NuiApi.h>
原创
7177阅读
2评论
3点赞
发布博客于 3 年前

Kinect学习(五):提取带用户ID的深度数据

前言在前面的一篇文章中讨论了如何从Kinect获取深度图:Kinect学习(四):提取深度数据。 这里要对其进行拓展,Kinect可以获取两种格式的深度图:不带用户ID的深度数据,也是存储在16位的变量中,但是只使用了前12位,用来表示深度。带用户ID的深度数据,16位,前3位表示用户ID,最多可以识别6个人,后13位表示深度;在前一篇文章(Kinect学习(四):提取深度数据...
原创
1562阅读
2评论
0点赞
发布博客于 3 年前

Kinect学习(四):提取深度数据

前言前面试着提取了Kinect的彩色数据:Kinect学习(三):获取RGB颜色数据。这次,要试着提取深度数据。 Depth Map(深度图)是包含与视点的场景对象的表面的距离有关的信息的图像或图像通道。其中,Depth Map 类似于灰度图像,只是它的每个像素值是传感器距离物体的实际距离。通常RGB图像和Depth图像是配准的,因而像素点之间具有一对一的对应关系。代码先上代...
原创
5899阅读
0评论
2点赞
发布博客于 3 年前

Kinect学习(三):获取RGB颜色数据

前言在前面的文章中介绍了如何搭建Kinect开发环境:Kinect学习(一):开发环境搭建。搭建好环境后,首先要做的当然就是试着读取Kinect中的数据了。 Kinect有三个镜头,中间的是RGB摄像头,左边的是红外线发射器,右边的是红外线CMOS摄像头构成的3D结构光摄像头,用来采集深度数据。彩色摄像头最大支持1280*960分辨率成像,红外摄像头最大支持640*480成像。接...
原创
4021阅读
6评论
7点赞
发布博客于 3 年前

Kinect学习(二):学习资源整理(转)

转自:https://blog.csdn.net/zouxy09/article/details/8145688 刚刚接触Kinect,在网上狂搜资料,获得了很多有利于学习Kinect开发的资源,现整理如下: 首先当然是官方的API介绍了,编程少不了的。Kinect for Windows Programming Guide:http://msdn.microso...
转载
1548阅读
0评论
3点赞
发布博客于 3 年前

VGGNet论文(Very Deep Convolutional Networks for Large-Scale Image Recognition)(译)

Very Deep Convolutional Networks for Large-Scale Image Recognition仅供参考,个人水平有限,如有不足谢谢指正。 原文地址:Very Deep Convolutional Networks for Large-Scale Image Recognition摘要在这项工作中,我们研究了卷积网络的深度对大规模图像识别任务精度的...
翻译
1368阅读
0评论
2点赞
发布博客于 3 年前

Kinect学习(一):开发环境搭建

前言当初刚进大学时买了一台Xbox 360,为了玩体感游戏另外还买了一个Kinect
原创
17820阅读
4评论
5点赞
发布博客于 3 年前

迭代最近点(Iterative Closest Point, ICP)算法及matlab实现

前言通常,使用RGB-D相机或是其他方法获取到物体的三维点云后,由于采集设备不同、拍摄视角不同等等因素的影响,即使是同一个物体所得到的点云也会有较大的差异,主要是旋转或者平移的变化。对于一组图像数据集中的两幅图像,需要通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。所以,就需要对点云进行配准。 迭代最近点算法(ICP)是一...
原创
14035阅读
11评论
16点赞
发布博客于 3 年前

SVD奇异值分解

前言之前的博客:特征值和特征向量,讨论了矩阵的特征分解相关的概念。公式如下所示:A=WΣWT(1)(1)A=WΣWTA = W \Sigma W^T \tag{1}但是特征分解有一个限制条件,即AAA必须是方阵,如果不是方阵则上式就不能使用了。为了在AAA矩阵不是方阵时,即行列数不等时,也能分解矩阵的特征,就要用到SVD了。定义SVD的作用也是对矩阵进行分解,但是与特征...
原创
629阅读
0评论
0点赞
发布博客于 3 年前

特征值和特征向量

前言特征值和特征向量是计算机视觉以及机器学习中常常会用到的概念,比如PCA(主成分分析)等算法。这篇文章中会记录一些我自己对矩阵的特征值和特征向量的理解以及学习笔记。从简单实例理解如上图是一个简单的示意图,在两个坐标系中给出了两个向量(黑色),红色表示其沿两个坐标轴方向正交分解得到的向量,数字表示向量的长度。一般来说矩阵可以表示某一种线性变化,比如,在这个例子中,向量都是2维的...
原创
2894阅读
0评论
2点赞
发布博客于 3 年前

神经风格迁移(Neural Style Transfer)程序实现(Caffe)

前言上次的博客写了神经风格迁移(Neural Style Transfer)程序实现(Keras),使用keras的一个好处就是api简单,能够快速部署模型,使用很方便。出于学习目的,这次又使用caffe实现了一遍,整体思路跟前面的差不多,就不多说了。详细可以参考论文:一个艺术风格化的神经网络算法(A Neural Algorithm of Artistic Style)(译)。程序不...
原创
2167阅读
0评论
3点赞
发布博客于 3 年前

神经风格迁移(Neural Style Transfer)程序实现(Keras)

前言以前翻译了神经风格迁移的论文:一个艺术风格化的神经网络算法(A Neural Algorithm of Artistic Style)(译),这篇文章中会给出其基于Keras的实现。github上也有很多相关的实现,也有caffe、tensorflow等等框架的实现,如果感兴趣可以自行到github上搜索。出于学习的目的,我是模仿别人基于keras进行了实现。程序不说废话了,上代码...
原创
3968阅读
9评论
1点赞
发布博客于 3 年前

AlexNet论文(ImageNet Classification with Deep Convolutional Neural Networks)(译)

前言最近一直比较忙,总算才有时间看点深度学习的论文。这篇论文是大神Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton三人提出的AlexNet深度卷积神经网络,摘得了2010年ILSVRC比赛的桂冠。AlexNet在现在也经常会用到,可以说是很经典的一个CNN框架了。出于学习的目的,一方面可以做笔记,一方面也可以督促自己的学习,我才打算翻译下这...
原创
46817阅读
7评论
34点赞
发布博客于 3 年前

OpenFace学习(2):FaceNet+SVM匹配人脸

前言在前面的博客中(OpenFace学习(1):安装配置及人脸比对),介绍了OpenFace的安装配置,以及一个人脸匹配的demo。其中只是匹配了几张图片中人脸,对每个人脸的特征向量很粗略地采用欧氏距离测量,效果也还不错。本文中将使用SVM来对每个人脸的特征向量进行分类,进行人脸比对。demo代码文件有三个:featrure_extract.py:提取人脸信息,每一张人脸提取...
原创
5881阅读
2评论
0点赞
发布博客于 3 年前

OpenFace学习(1):安装配置及人脸比对

前言前几天在网上看到了openface(链接),觉得挺有趣就下载配置了一下,稍微修改了一下跑了个demo,效果还是很不错的。这里分享下安装配置的过程以及demo。简介openface是一个基于深度神经网络的开源人脸识别系统,由卡耐基梅隆大学的B. Amos主导。代码全部开源在github上了,还提供了一些预训练模型。该系统是参考CVPR2015的:FaceNet: A Unifie...
原创
17419阅读
2评论
2点赞
发布博客于 3 年前

python dlib学习(十二):面部表情跟踪

前言面部表情跟踪的原理就是检测人脸特征点,根据特定的特征点可以对应到特定的器官,比如眼睛、鼻子、嘴巴、耳朵等等,以此来跟踪各个面部器官的动作。程序实现原理很简单,下面直接上程序了:# *_*coding:utf-8 *_*# author: 许鸿斌import sysimport cv2import dlibimport osimport loggingim...
原创
3286阅读
2评论
3点赞
发布博客于 3 年前

LBP纹理特征提取学习笔记

前言LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征。常用的特征描述子有:HOG、Harris、LBP等等,其中LBP是最为简单且有效的一种...
原创
32734阅读
17评论
52点赞
发布博客于 3 年前

HOG+SVM行人检测

前言在前面的博客:HOG特征检测学习笔记中,介绍了HOG特征,也附有代码实现。这篇博客中将会使用HOG+SVM这一经典的目标检测算法来进行行人检测,但是不会讨论HOG或者SVM的理论部分,如果有不懂的请自行查阅以前的博客。我分别写了python版本和C++版本的demo,数据集是直接下载了别人的,这些都会附在文章的最后。 网上也有很多介绍HOG的不错的文章: HOG+SVM行人检测的...
原创
21685阅读
39评论
21点赞
发布博客于 3 年前

基于Python编写的简易翻译器

前言阅读英文文献碰到生词时,我常常使用谷歌翻译或是搜狗翻译来辅助翻译英文。谷歌翻译相对其他同行来说,翻译学术相关的东西时,效果是还可以的。前段时间,发现有些PDF格式的英文段落复制到谷歌翻译上格式总是不对,比如多出了很多换行等等,每次都要手动修改,于是想着干脆写一个自动调整好格式并翻译的程序,偷下懒。程序不算复杂,下面会给出截图,以及托管在github上的代码和打包好的软件包。说明...
原创
3833阅读
1评论
0点赞
发布博客于 3 年前

HOG特征检测学习笔记

HOG简介HOG(Histogram of Oriented Gridients)特征检测算法,最早由法国研究院Dalal等在CVPR2005上提出,是一种用于检测人体目标检测的图像描述子,用于表征图像局部梯度方向和梯度强度分布特性。其主要思想是:在边缘具体位置未知的情况下,边缘方向的分布也可以很好地表示行人目标的外形轮廓。Dalal等提出的HOG+SVM算法当时在行人检测上取得了巨大的成功,...
原创
3034阅读
1评论
6点赞
发布博客于 3 年前

自适应中值滤波及实现

前言无意中看到了一篇比较老的论文,Adaptive median filters: new algorithms and results。感兴趣的可以下载下来看看。主要就是提出了一种自适应中值滤波算法,这个算法是很经典的中值滤波算法的改进版本,自动选择滤波器的大小,以追求更好的效果。原理十分简单,后面都尽量简短地进行说明。中值滤波器(Median Filter)中值滤波的思想就是比较一...
原创
23612阅读
1评论
19点赞
发布博客于 3 年前

Caffe官方教程翻译(10):Editing model parameters

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接: http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynbN...
翻译
370阅读
0评论
0点赞
发布博客于 3 年前

使用神经网络拟合曲线(MATLAB/Python)

前言神经网络通常用于分类任务,也可以用于回归任务。使用一个含有隐层的神经网络可以很轻松地拟合出非线性曲线。下面是几个示例,包含matlab的和python的,都很简单。实例1首先,生成正弦曲线,并引入随机噪声。随后,在matlab中使用feedforwardnet函数创建BP神经网络,训练网络,并查看最后的拟合结果。%%clc;clear all;close all;...
原创
28829阅读
1评论
14点赞
发布博客于 3 年前

Caffe官方教程翻译(9):Multilabel Classification with Python Data Layer

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接: http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/pascal-multilabel-w...
翻译
626阅读
0评论
1点赞
发布博客于 3 年前

Caffe官方教程翻译(8):Brewing Logistic Regression then Going Deeper

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接: http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/brewing-logreg.ipyn...
翻译
372阅读
0评论
1点赞
发布博客于 3 年前

Caffe官方教程翻译(7):Fine-tuning for Style Recognition

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb...
翻译
603阅读
2评论
1点赞
发布博客于 3 年前

Caffe官方教程翻译(6):Learning LeNet

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipy...
翻译
612阅读
2评论
1点赞
发布博客于 3 年前

Caffe官方教程翻译(5):Classification: Instant Recognition with Caffe

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipy...
翻译
473阅读
0评论
1点赞
发布博客于 3 年前

Caffe官方教程翻译(4):CIFAR-10 turorial

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://caffe.berkeleyvision.org/gathered/examples/cifar10.htmlAlex’s CIFAR-10 tutorial...
翻译
262阅读
0评论
0点赞
发布博客于 3 年前

Caffe官方教程翻译(3):Siamese Network Training with Caffe

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://caffe.berkeleyvision.org/gathered/examples/siamese.htmlSiamese Network Training...
翻译
1172阅读
0评论
1点赞
发布博客于 3 年前

Caffe官方教程翻译(2):Web demo

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://caffe.berkeleyvision.org/gathered/examples/web_demo.htmlWeb Demo依赖项这个服务器...
翻译
609阅读
0评论
0点赞
发布博客于 3 年前

Caffe官方教程翻译(1):LeNet MNIST Tutorial

前言最近打算重新跟着官方教程学习一下caffe,顺便也自己翻译了一下官方的文档。自己也做了一些标注,都用斜体标记出来了。中间可能额外还加了自己遇到的问题或是运行结果之类的。欢迎交流指正,拒绝喷子! 官方教程的原文链接:http://caffe.berkeleyvision.org/gathered/examples/mnist.htmlTraining LeNet on MNIST ...
翻译
681阅读
0评论
0点赞
发布博客于 3 年前

三维重建学习(5):简单地从数学原理层面理解双目立体视觉

前言这是我前段时间学习双目视觉时做的笔记,这一篇文章不会进行过于细致的推导,仅仅会在一些理想情况下做一些简单的推导,目标是得到一个直观上的认识:双目视觉是如何得到三维立体坐标的。以后的博客还会再放上一些详细的推导,和对双目视觉提取景深的程序实现。嘛,先一步一步来吧。 后面默认都知道摄像机的针孔模型以及相机坐标系、世界坐标系、图像坐标系等等这些概念,如果不清楚请查看之前的博客:三维重建学习(2...
原创
1752阅读
0评论
0点赞
发布博客于 3 年前

RedHat7.0更新yum源(踩过的坑)

前言redhat系统安装好尽管默认带有yum,但是redhat的更新包只对注册用户有效,对于我们这些穷人来说,只有自己手动更改成CentOS的更新包了。 最初在网上查找资料:Redhat 7使用CentOS 7的Yum网络源 基本的流程就是:删除redhat7.0系统自带的yum软件包;自行下载所需要的软件包;根据依赖项安装;新建repo配置文件。 一般来说,之后就可以正常使...
原创
5419阅读
1评论
5点赞
发布博客于 3 年前

QT+OpenCV照片动画风格转换

前言用OpenCV将摄像头采集到的图片转换成动画风格,加上了QT界面。这个小实验并不复杂,后面直接贴代码。代码在QT creator中建的工程,只上部分比较重要的代码了,其他都是一样的。 mainWindow.h:定义了一些槽函数以及中间变量。#ifndef MAINWINDOW_H#define MAINWINDOW_H#include <QMainWind...
原创
1293阅读
0评论
0点赞
发布博客于 3 年前

class std::vector<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<ch

问题描述今天用vs编译C++代码时碰到了如下错误: 报错信息:错误 LNK2005 class std::vectorclass std::basic_stringchar,struct std::char_traitschar>,class std::allocatorchar> >,class std::allocatorclass std::basic_stringchar,
原创
2156阅读
0评论
0点赞
发布博客于 3 年前

基于PYQT编写一个人脸识别软件(2)

前言以前在博客:基于PYQT编写一个人脸识别软件 中给出了我自己用PYQT编写的一个小软件。鉴于使用的是开源库——face_recogniton,尽管使用很简单,但是还有些问题,比如:识别黄种人时效果不好,运行速度较慢等等。 有一点还需要说明,face_recogntion的底层是dlib机器学习库,换种想法我们也可以使用dlib的一些基础功能自己编写出一些类似face_recogntion
原创
11049阅读
17评论
5点赞
发布博客于 3 年前

基于PYQT编写的一个人脸识别软件

详细请见我的博客:http://blog.csdn.net/hongbin_xu/article/details/79179194。 软件基于pyqt、dlib、opencv等库编写,包含有python源码和我打包好的exe可执行文件。
zip
发布资源于 3 年前

PYQT中QThread输出到textBrowser

问题概述在PYQT中,有时我们会需要将log信息等实时打印到ui控件上,但是由于PYQT的进程保护机制,我们无法像使用print函数中那样,直接使用就能打印出来信息。所以通常都会发现,PYQT中的UI控件,比如QTextBrowser,使用它的append()函数和print函数同时来打印信息,往往print会将信息实时一点点打印出来,而QTextBrowser则不会,反而会等到这一段程序运行
原创
7536阅读
2评论
1点赞
发布博客于 3 年前

眨眼检测代码

基于python dlib和sklearn的眨眼检测完整工程,详细请参考我的博客:http://blog.csdn.net/hongbin_xu/article/details/79033116。
zip
发布资源于 3 年前

python dlib学习(十一):眨眼检测

前言我们要使用opencv和dlib实现在视频流中实时检测和计数眨眼次数。 参考论文:Real-Time Eye Blink Detection using Facial Landmarks 作者在这篇文章中提出了一个眼睛纵横比(eye aspect ratio (EAR))的概念,通过计算这个EAR的数值,我们可以判断眼睛是张开还是闭合,从而检测眨眼动作。 首先,参考别人翻译的这篇文章
原创
23621阅读
32评论
21点赞
发布博客于 3 年前

一个艺术风格化的神经网络算法(A Neural Algorithm of Artistic Style)(译)

文章地址:《A Neural Algorithm of Artistic Style》. arXiv:1508.06576 Github链接:https://github.com/jcjohnson/neural-style  对于好的艺术作品,尤其是画作,人们已经掌握了通过在一幅图像的内容和风格中构成复杂的相互影响来创作独特的视觉体验的技能。因此这个过程的算法基础是未知的,并且不存在具有相
翻译
3054阅读
1评论
2点赞
发布博客于 3 年前

相机标定完整工程

参考我的博客:http://blog.csdn.net/hongbin_xu/article/details/78988450 张正友相机标定完整工程实现,开发环境为(win10+VS2015+OpenCV3.1.0)
zip
发布资源于 3 年前

三维重建学习(4):张正友相机标定程序实现(OpenCV)

前言在前面的博客中( 三维重建学习(3):张正友相机标定推导),推到了张正友相机标定的数学原理,并给出了标定流程。OpenCV中已经封装好了一系列函数,我们使用这些函数可以更快捷地实现张正友相机标定。程序流程准备好一系列用来相机标定的图片;对每张图片提取角点信息;由于角点信息不够精确,进一步提取亚像素角点信息;在图片中画出提取出的角点;相机标定;对标定结果评价,计算误差
原创
7524阅读
7评论
11点赞
发布博客于 3 年前

三维重建学习(3):张正友相机标定推导

前言前面的几篇博客中介绍了有关相机标定的基础知识(三维重建学习(1):基础知识:旋转矩阵与旋转向量、三维重建学习(2):相机标定基础)。这次介绍一个十分经典的单目相机标定方法——张正友标定,并给出数学理论推导。基本方程模型我们首先约定如下表示: 二维点坐标:m=[uv]m = \begin{bmatrix} u \\ v \end{bmatrix},三维点坐标:M=⎡⎣⎢XYZ⎤⎦⎥M = \be
原创
2870阅读
1评论
7点赞
发布博客于 3 年前

使用python和树莓派实现远程监控

前言前段时间因为各种杂事缠身,一直没时间自己玩玩。今天元旦,打算给自己放个假,所以就寻思着玩玩手边吃了几个月灰的树莓派。花了些时间自己写了点代码,实现了在树莓派端启动服务器,并实时将从连接到树莓派的摄像头读取的数据传输到服务器上,在客户端接收服务器的数据并实时显示图像。功能很简单,代码也很简陋,希望勿喷。 我并没有做完整图像处理的功能,本来打算放yolo上去进行实时目标检测,于是我试着在树莓派上跑
原创
13013阅读
5评论
11点赞
发布博客于 3 年前

三维重建学习(2):相机标定基础

前言在相机标定过程中,我们会碰到一些概念,比如:摄像机模型、世界坐标系、图像坐标系等等。为便于理解推导,所以又整理了相关的笔记,介绍的都是些比较基础的概念,也比较容易。相机模型针孔相机模型注:下面的两幅图片摘自: http://blog.csdn.net/xuelabizp/article/details/50314633 上图是现实中针孔相机的成像模型,物体的投影
原创
2358阅读
3评论
4点赞
发布博客于 4 年前

三维重建学习(1):基础知识:旋转矩阵与旋转向量

前言由于摄像机标定中会使用到旋转矩阵以及旋转向量的知识,所以就整理了一下有关与这一部分基础知识的笔记,并进行详细的数学推导。旋转矩阵假设坐标系分别绕着xx轴旋转ϕ\phi角,绕yy轴旋转θ\theta角,绕zz轴旋转ψ\psi角,这里旋转的角度就是我们常说的pitch, roll, yaw。设任意某点在旋转前的坐标系中的坐标是(x,y,z)(x,y,z),旋转后的坐标是(x‘,y‘,z‘)(x^{`
原创
13612阅读
2评论
24点赞
发布博客于 4 年前

python dlib 换脸完整工程

如题,基于python和dlib的换脸工程。详细请参考博客:http://blog.csdn.net/hongbin_xu/article/details/78878745。
zip
发布资源于 4 年前

python dlib学习(十):换脸

前言这次再用dlib来做一个很酷的应用:换脸。在百度可以搜出一大堆转载的,里面虽然讲的不是很详细(数学部分),个人感觉大多数人对于奇异值分解、仿射变换矩阵 怎么实现根本不敢兴趣,只想上代码实现功能,所以后面就省去了数学的那部分。 一篇文章的链接:教你用200行Python代码“换脸” 代码的github链接:https://github.com/matthewearl/faceswap/blob
原创
8814阅读
3评论
8点赞
发布博客于 4 年前

PCL点云库学习(1):环境配置(Ubuntu16.04+QT5+VTK8.0)

方式一:从公共软件源安装sudo apt-get install libpcl-dev pcl-tools直接输入上面代码安装,不保证一定能行。有一堆依赖的东西,保不准就报错了。方式二:编译安装如果上面的方法安装出错了,那就一步一步自己手动安装把。依赖库依赖库也是个贼烦人的东西,没有的话也会报错。有:Boost、Eigen、FLANN、VTK(QT5)。Boost:sudo apt-get inst
原创
6708阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 4 Art Generation with Neural Style Transfer

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
5590阅读
3评论
2点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 4 Face Recognition for the Happy House

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
1677阅读
1评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 3 Car detection

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的...
原创
6992阅读
7评论
3点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 2 Residual Networks

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2625阅读
0评论
1点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 2 Keras - Tutorial - Happy House

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
1245阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 1 Convolution model - Application

吴恩达deeplearning.ai课程作业,自己写的答案。补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
4667阅读
2评论
1点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 4 Week 1 Convolutional Neural Networks: Step by Step

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2158阅读
0评论
1点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 3 TensorFlow Tutorial

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
3905阅读
0评论
5点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 2 Optimization methods

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
1388阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 1 3.Gradient Checking

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2793阅读
0评论
1点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 1 2.Regularization

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2395阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 1 1.Initialization

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2028阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 1 Week 4 assignment4_2

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2047阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 1 Week 4 assignment4_1

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
3190阅读
0评论
0点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 1 Week 3 assignment3

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
6185阅读
8评论
1点赞
发布博客于 4 年前

吴恩达深度学习课程deeplearning.ai课程作业:Class 1 Week 2 assignment2_2

吴恩达deeplearning.ai课程作业,自己写的答案。 补充说明: 1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学
原创
2776阅读
2评论
2点赞
发布博客于 4 年前