物体检测框架RON实现mobilenet(基于caffe)

本文档介绍如何在RON物体检测框架中实现基于Caffe的Mobilenet预训练模型,详细步骤和资源链接可在作者的GitHub上查阅。
摘要由CSDN通过智能技术生成

一.有关物体检测框架RON的详情请参阅作者的github:点击打开链接

RON: Reverse Connection with Objectness Prior Networks for Object Detection 
CVPR2017 

这里仅实现RON+mobilenet

  1. mobilenet预训练模型截取
      我选的预训练模型来自 点击打开链接
      去掉pool6,将fc7改成卷积层,添加RON检测层。分别用最后4层做检测。
      训练网络文件:train320-cudnn.prototxt
      截取后的网络:mobileNet_6.prototxt
      截取网络code:cutNetwork.py
      三个文件下载:
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值