[机器学习] L1正则和L2正则

本文介绍了正则项的两种主要类型:L1正则(一范数)和L2正则(二范数)。L1正则导致模型权重稀疏,有助于防止过拟合,而L2正则则可能导致模型过于复杂,易过拟合。在优化过程中,L1正则的梯度不连续,优化相对复杂,但能增强模型的强健性。L2正则的梯度连续,使得模型可能保留不重要特征。选择合适的正则项对模型的简洁性和泛化能力至关重要。
摘要由CSDN通过智能技术生成
  1. 正则项有那些类别

主要分为L1正则和L2正则,或者叫做一范数和二范数正则。
首先,范数(norm)是指向量在空间中的长度。用于对向量进行衡量。

范数的一般计算公式为:

在这里插入图片描述

如果p值为1,就是一范数,p为2就是2范数。

范数可以用作损失函数或者是正则项。用作损失函数时,不同的范数起到的作用是不同的。

一范数作为损失函数时,可以看作是偏差的绝对值:

在这里插入图片描述

当使用二范数作为损失函数时,可以看作是和偏差的欧式距离:

在这里插入图片描述

优化欧式距离的方法,就是最小二乘法。

使用一范数作为损失函数并没有使用二范数那么方便,因为一范数的导数函数是不连续的,所以无法直接求导得到最优解。而使用一范数的优势在于,能够增强模型的强健性。换句话说,使用二范数会容易让模型出现过拟合。原因是,由于一范数和二范数的特点不同,他们的一阶导的是这样的:

在这里插入图片描述

可见无论w等于多少,梯度总是-1或者是1,所以在经历过若干步后,这个特征很有可能会消失。在模型中,如果一个特征的作用并不明显,就有可能会被消除,这样可以保证模型是简洁的,也就保证模型不那么容易过拟合。

二范数的一阶导是:

在这里插入图片描述

随着w的值接近0时,梯度越来越小,所以很难收敛到0,这样导致很多不重要的特征被保留下来,模型变得冗余,泛化能力也会下降。

同理,在使用一范数和二范数作为损失函数时,也会存在类似的问题,一范数的正则函数的输出具有稀疏性。同时,一范数没有特定的最优解,而二范数有,一范数的优化要比二范数的优化在计算上复杂一点。

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值