匈牙利算法实现(from scipy.optimize import linear_sum_assignment)

linear_sum_assignmentSciPy 库中 scipy.optimize 模块提供的一个函数,专门用于解决线性分配问题,也被称为匈牙利算法。这个问题通常出现在任务分配中,例如将一组工人分配给一组任务,以最小化总成本或最大化总收益。

代码解释

from scipy.optimize import linear_sum_assignment

这行代码导入了 linear_sum_assignment 函数。

什么是线性分配问题?

假设有一个矩阵 cost_matrix,其中 cost_matrix[i, j] 表示将第 i 个工人分配给第 j 个任务的成本(或收益的负值)。目标是找到一种分配方式,使得所有工人的总分配成本最小。

示例

假设有以下成本矩阵:

import numpy as np
from scipy.optimize import linear_sum_assignment

cost_matrix = np.array([
    [4, 2, 8],
    [2, 3, 7],
    [3, 6, 9]
])

row_ind, col_ind = linear_sum_assignment(cost_matrix)

如何使用 linear_sum_assignment

  1. 输入linear_sum_assignment(cost_matrix) 函数的输入是一个二维数组或矩阵 cost_matrix,其中每个元素表示将某个任务分配给某个工人的成本。

  2. 输出:该函数返回两个数组 row_indcol_ind,分别表示最优分配中行和列的索引。例如,在上面的代码中,row_ind 对应于工人,col_ind 对应于任务。

结果说明

如果你打印出 row_indcol_ind,你会得到:

print(row_ind)  # [0 1 2]
print(col_ind)  # [1 0 2]

这意味着:

  • 第 0 个工人应被分配给第 1 个任务。
  • 第 1 个工人应被分配给第 0 个任务。
  • 第 2 个工人应被分配给第 2 个任务。

这是一种最小化总成本的分配方式。

总结

linear_sum_assignment 是解决任务分配优化问题的一个强大工具,特别适用于需要在二维代价矩阵中找到最低成本的分配方案的场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值