树状数组(Binary Index Tree, BIT)是很多OIer心中最简洁优美的数据结构之一。最简单的树状数组支持两种操作,时间复杂度均为 :
单点修改:更改数组中一个元素的值
区间查询:查询一个区间内所有元素的和
树状数组就是这样一种结构,它巧妙地利用了二进制(实际上,树状数组的英文名BIT,直译过来就是二进制下标树)。
那么如何更新呢,大家会发现更新就是一个“爬树”的过程。一路往上更新,直到MAXN(树状数组的容量)。
树状数组的实现
前面已经讲得很详细了,代码实现倒是一件简单的事了。不过我们需要先解决一个问题:lowbit怎么算?如果一位一位验证的话,会形成额外的时间开销。然而,我们有这样神奇的一个公式:
为什么可以这样?我们需要知道,计算机里有符号数一般是以补码的形式存储的。-x相当于x按位取反再加1,会把结尾处原来1000…的形式,变成0111…,再变成1000…;而前面每一位都与原来相反。这时我们再把它和x按位与,得到的结果便是lowbit(x)。下面的图中举了两个例子:
现在我们可以愉快地实现树状数组了:
// 单点修改
int tree[MAXN];
int lowbit(int x) {
return x & (-x);
}
// 数组中下标为 0 的位置不使用
inline void update(int i, int x)
{
for (int pos = i; pos < MAXN; pos += lowbit(pos))
tree[pos] += x;
}
// 求前n项和
inline int query(int n)
{
int ans = 0;
for (int pos = n; pos; pos -= lowbit(pos))
ans += tree[pos];
return ans;
}
// 区间查询
inline int query(int a, int b)
{
return query(b) - query(a - 1);
}
初始化的时候,我们只需要update每个点的初始值即可。