树状数组基本使用

树状数组,又称二进制指数树,是一种高效的数据结构,常用于单点修改和区间查询操作,时间复杂度均为O(logN)。通过lowbit计算,可以快速更新和查询数组元素。本文介绍了树状数组的基本概念、更新和查询方法,并提供了C++代码实现。
摘要由CSDN通过智能技术生成

树状数组(Binary Index Tree, BIT)是很多OIer心中最简洁优美的数据结构之一。最简单的树状数组支持两种操作,时间复杂度均为 :

单点修改:更改数组中一个元素的值
区间查询:查询一个区间内所有元素的和

树状数组就是这样一种结构,它巧妙地利用了二进制(实际上,树状数组的英文名BIT,直译过来就是二进制下标树)。


那么如何更新呢,大家会发现更新就是一个“爬树”的过程。一路往上更新,直到MAXN(树状数组的容量)。

树状数组的实现

前面已经讲得很详细了,代码实现倒是一件简单的事了。不过我们需要先解决一个问题:lowbit怎么算?如果一位一位验证的话,会形成额外的时间开销。然而,我们有这样神奇的一个公式:

为什么可以这样?我们需要知道,计算机里有符号数一般是以补码的形式存储的。-x相当于x按位取反再加1,会把结尾处原来1000…的形式,变成0111…,再变成1000…;而前面每一位都与原来相反。这时我们再把它和x按位与,得到的结果便是lowbit(x)。下面的图中举了两个例子:

现在我们可以愉快地实现树状数组了:

// 单点修改
int tree[MAXN];

int lowbit(int x) {
	return x & (-x);
}

// 数组中下标为 0 的位置不使用
inline void update(int i, int x)
{
    for (int pos = i; pos < MAXN; pos += lowbit(pos))
        tree[pos] += x;
}

// 求前n项和
inline int query(int n)
{
    int ans = 0;
    for (int pos = n; pos; pos -= lowbit(pos))
        ans += tree[pos];
    return ans;
}

// 区间查询
inline int query(int a, int b)
{
    return query(b) - query(a - 1);
}

初始化的时候,我们只需要update每个点的初始值即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值