numpy中reshape的用法

本文详细介绍了NumPy库中reshape函数的一般用法和特殊用法,包括如何将数组或矩阵转换为指定行数和列数的形状。示例展示了如何将数组转成一行或一列,强调了-1在reshape中的作用,即自动计算缺失的维度大小。通过理解reshape函数,可以更灵活地操作和组织数据。
摘要由CSDN通过智能技术生成

一般用法

numpy.arange(n).reshape(a, b); 依次生成n个自然数,并且以a行b列的数组形式显示

import numpy
numpy.arange(24).reshape(3, 8)

在这里插入图片描述

特殊用法

mat (or array).reshape(c, -1); 必须是矩阵格式或者数组格式,才能使用 .reshape(c, -1) 函数, 表示将此矩阵或者数组重组,以 c行d列的形式表示

-1的作用就在此,自动计算d:d=数组或者矩阵里面所有的元素个数/c, d必须是整数,不然报错)(reshape(-1, e)即列数固定,行数需要计算
import numpy
arr = numpy.arange(24).reshape(3, 8)
arr.reshape(4,-1)

在这里插入图片描述

import numpy
arr = numpy.arange(24).reshape(3, 8)
# arr.reshape(4,-1)
arr.reshape(-1,4)

在这里插入图片描述

示例

转成一行

import numpy as np
a =np.array([[1,2,3,4],[4,2,5,7],[1,2,4,9]])
b = a.reshape(1,-1)
print(b)

在这里插入图片描述

转成一列:

import numpy as np
a =np.array([[1,2,3,4],[4,2,5,7],[1,2,4,9]])
b = a.reshape(-1,1)
print(b)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sharon@zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值