算法训练 Hanoi问题

描述
  如果将课本上的Hanoi塔问题稍做修改:仍然是给定N只盘子,3根柱子,但是允许每次最多移动相邻的M只盘子(当然移动盘子的数目也可以小于M),最少需要多少次?
  例如N=5,M=2时,可以分别将最小的2个盘子、中间的2个盘子以及最大的一个盘子分别看作一个整体,这样可以转变为N=3,M=1的情况,共需要移动7次。

输入

输入描述:
  输入数据仅有一行,包括两个数N和M(0<=M<=N<=8) 
输入样例: 

输出
输出描述: 
  仅输出一个数,表示需要移动的最少次数
输出样例: 

提示

HINT:时间限制:1.0s 内存限制:512.0MB


        一个盘子移动1次就够,两个盘子移动3次,三个盘子需要移动7次,可以发现N个盘子最少移动2^N-1次。本题将M个盘子看成一个整体,移动时整体一起移动,所以只要计算最少有几个整体即可。

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
	int n, m;
	cin>>n>>m;
	if(n%m!=0)  n = n/m+1;
	else n /= m;
	cout<<pow(2, n)-1;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值