描述
如果将课本上的Hanoi塔问题稍做修改:仍然是给定N只盘子,3根柱子,但是允许每次最多移动相邻的M只盘子(当然移动盘子的数目也可以小于M),最少需要多少次?
例如N=5,M=2时,可以分别将最小的2个盘子、中间的2个盘子以及最大的一个盘子分别看作一个整体,这样可以转变为N=3,M=1的情况,共需要移动7次。
输入
输入描述:
输入数据仅有一行,包括两个数N和M(0<=M<=N<=8)
输入样例:
输出
输出描述:
仅输出一个数,表示需要移动的最少次数
输出样例:
提示
HINT:时间限制:1.0s 内存限制:512.0MB
一个盘子移动1次就够,两个盘子移动3次,三个盘子需要移动7次,可以发现N个盘子最少移动次。本题将M个盘子看成一个整体,移动时整体一起移动,所以只要计算最少有几个整体即可。
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int n, m;
cin>>n>>m;
if(n%m!=0) n = n/m+1;
else n /= m;
cout<<pow(2, n)-1;
return 0;
}