稀疏表示人脸识别入门文章-《Robust Face Recognition via Sparse Representation》马毅

       人脸识别是机器视觉中非常火的一个领域了,在近十几年来发展迅猛,而本文介绍的方法是基于稀疏表示分类(Sparse Representation based classification,SRC)的人脸识别,稀疏表示理论非常强大,突破了传统采样定了的束缚,信号的稀疏表示即用尽可能少的非零元素表示信号主要信息,简化信号处理的求解过程,马毅在09年将稀疏表示引入人脸识别中,其性能相比之前的人脸识别方法具有突破性的进展。

       相信很多同学都听说过NN和NS两种分类器,NN对与测试样本的分类是根据单个训练样本与测试样本之间的表示,而NS则是根据每类的训练样本对测试样本的线性表示进行分类识别,SRC则是介于这两种分类器之间的一种人脸分类器,选用部分训练样本对测试样本进行紧凑表示。

       接下来对SRC主要步骤进行阐述:在进行稀疏表示人脸分类之前,对训练样本和测试样本进行预处理,即对齐、剪切、归一化,假设有k类带标签的样本,将每张图片按列进行排放, Ai=[vi,1,vi,2,...,vi,ni] ,根据子空间理论,来自同一样本的样本位于相同的线性子空间中,故假设第 ith 训练样本数目充足,来自第 ith 的测试样本 y 可表示为:
                                           y=αi,1vi,1+αi,2vi,2+...+αi,nivi,ni
其中 αi,jvi,j 为系数。但是由于测试样本是未知的,不知道它来自哪个类别,怎么办呢?于是采用这个训练样本对测试样本进行表示(这里就为接下来的稀疏表示埋下伏笔),K类训练样本组成矩阵 A :
                                   A=[A1,A2,...,Ak]=[v1,1,v1,2,...,vk,nk]
于是,测试样本 y 可以由A线性表示为:
                                                                       y=Ax0
其中系数向量为 x0=[0,...,0,αi,1,αi,2,...,αi,ni,0,...,0]T ,对于分类来说,上述的系数想来是非常理想的,现在看这个系数向量,例如 k=20 ,只有 的元素不为零,根据稀疏表示理论看来就熟悉了呢,这就是典型的对测试样本的稀疏表示。
       接下来讨论 y=Ax 的求解问题,求解向量的稀疏解,可以转化成为下面优化问题:
x^0=argminx0 s.t. Ax=y ,但是在求解 l0norm 时是个NP-Hard问题(优化问题具体我也不懂,反正就是不好正面求解,既然正着不好求,那就想别的办法,这里用近似求解),此处转化成 l1norm 求解问题:
                                                  x^1=argminx1 s.t. Ax=y
(论文中有解释,几何意义上的,数学不好,不能分析了,自行看吧。马毅的主页还有很多关于优化问题的文献)
这里写图片描述
上图是SRC的完整过程Latex写公式太费劲了就截图了。
实验部分
       作者针对传统人脸识别过程中特征提取方式和样本处于遮挡进行分析,对于特征提取方式对SRC的影响,在大于120D时各种方法差别不大,所以通常的特征提取方法对于分类系统没有影响;对于遮挡问题,本文采用在字典加入单位矩阵作为误差矩阵,消除遮挡或噪声干扰影响,实验非常丰富,总而言之证明,SRC在对于普通遮挡效果还是行的(但是效果提高空间巨大,所以这是做稀疏人脸识别的改进点之一)。
       PS:对于认证问题,本文提出SCI,可以判定是否为数据库中的图片或者非人脸,残差进行分类,稀疏系数进行认证判别,提高识别率;对于表情识别也是有效的。
稀疏表示人脸识别作为突破性发现,经过验证,识别率远远高于传统方法,具有效性和鲁棒性,但是他自身也是有缺陷的,主要有两点:一、训练样本数目充足,但是在现实生活中数据采样不是很充足,制约之一,改进点(著名的论文就是ESRC,引用率非常高);二、对于遮挡问题效果还是不好,这也是关于稀疏人脸识别改进工作的重要点之一,当然其他的改进点还有,上面两点只是主要突破点,从事这方面工作的同学可以进行思考改进。
上述就是这篇论文的大概内容,当然还有其他小的内容没有全部加进来,有兴趣的同学可以仔细阅读以下,09年这篇论文还有一个appendix,里面有内容的推导,仔细看看会有很大的收获。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页