白嫖专业版!Github Copilot Pro竟然可以免费使用

alt

今天有个好消息要和大家分享:

GitHub Copilot 已在 Visual Studio Code 上免费开放!

无论是谁,都能畅享 AI 助力下的高效开发新体验!

alt
如何免费在vscode中使用copilot
  • 下载最新版本的 VS Code https://code.visualstudio.com/Download
    如果下载慢,可以通过下面的网盘链接获取:
    https://pan.quark.cn/s/3fb6dcedfed8
  • 打开vscode编译器,按照下面步骤操作
alt
  • 这时候就可以看到账户已经启用Copilot Free alt
copilot Free 和copilot Pro主要功能对比
功能FreePro
消息和互动每月最多 50 个无限
实时代码建议每月最多 2,000无限
上下文感知编码支持和解释支持支持
VS Code 中的多文件编辑支持支持
切换模型支持支持
GitHub 中的代码审查不支持支持
拉取请求中的 Copilot Workspace不支持支持
VS Code 中的 Java 升级助手不支持支持
那我们如何白嫖copilot Pro呢

alt 通过上图可以看到,copilot Pro正常是需要每个月$10美元付费使用的,但是官方也说明了经过验证的学生、教师和热门开源项目的维护者可免费使用。

那怎么成为热门开源项目的维护者呢?

作为一名开发者,我第一时间想到了一个值得推荐的开源项目:python-office。它是一个专注于办公自动化的 Python 工具库,它的作者凭借对社区的持续贡献和项目的高热度,完全有资格享受 GitHub Copilot Pro的免费权益。而这个项目也正是开源精神的绝佳体现:以代码的力量帮助更多人提升效率。

项目地址:https://github.com/CoderWanFeng/python-office

项目简介: python-office 是一个强大的开源 Python 工具库,旨在帮助开发者轻松实现日常办公中的各种自动化操作。
通过简单的代码调用,你可以高效完成从文件处理到数据分析的多种任务。

项目特点:

  • 社区支持:开源项目,开发者可自由贡献代码或提需求。
  • 开箱即用:功能全面且简单易用,无需复杂配置。
  • 持续更新:项目维护者定期更新,添加更多实用功能。

主要功能:

  • 文档处理:支持 Word、Excel、PDF 等多种格式的文件操作,例如内容提取、格式转换、自动生成等。
  • 图像处理:包括水印添加、尺寸调整、格式转换等功能。
  • 网络工具:如二维码生成、网页内容抓取等。
  • 自动化脚本:轻松实现重复性任务的自动化,如批量重命名文件、批量发送邮件等。
  • 多场景适用:无论是个人办公、团队协作,还是企业级自动化需求,都能找到对应的工具。
最后

如果你也希望参与 python-office 的开发,可以通过贡献代码、提交需求或优化文档,成为这个项目的开发者之一!

这不仅是一次参与热门开源项目的宝贵机会,更有机会免费使用 GitHub Copilot Pro,让 AI 助力你的开发之旅。

感兴趣的朋友,可以加我v:baiguo_forever,拉你进交流群。

本文由 mdnice 多平台发布

### 二维前缀和算法在瓦片图案生成或处理中的应用 #### 定义与基本原理 二维前缀和是一种用于快速求解矩形区域内元素总和的技术。对于给定的一个矩阵 `A`,可以预先计算一个新的矩阵 `prefixSum`,其中每个元素 `(i,j)` 表示从原点 `(0,0)` 到当前坐标的子矩阵内所有数值之和。 通过这种方式,在后续查询任意指定区域内的元素累积值时只需常数时间复杂度 O(1),因为只需要访问四个预处理过的节点即可完成加减运算得出结果[^1]。 #### 应用场景分析 当涉及到像地图服务这样的应用场景时——特别是采用分层切片机制的地图系统(如微软 Bing 地图),这种技术能够显著提升性能效率: - **加速渲染过程**:利用二维前缀和可以在瞬间获取特定范围内的数据汇总信息,从而加快图像合成速度; - **简化碰撞检测逻辑**:游戏开发等领域经常需要用到对象间相互作用判断,借助此方法可迅速定位目标区间并作出响应; - **优化路径规划算法**:无论是最短路还是其他形式的空间搜索问题,都能受益于高效的数据检索能力所带来的优势[^2]。 #### 实现案例展示 下面给出一段 Python 代码片段作为例子说明如何基于上述理论框架构建实际解决方案: ```python def build_prefix_sum(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 prefix_sum = [[0]*(cols+1) for _ in range(rows+1)] for i in range(1,rows+1): for j in range(1,cols+1): prefix_sum[i][j]=matrix[i-1][j-1]+\ prefix_sum[i-1][j]+ \ prefix_sum[i][j-1]- \ prefix_sum[i-1][j-1] return prefix_sum def query_submatrix_sum(prefix_sum,x1,y1,x2,y2): """Query sum of elements within sub-matrix defined by top-left (x1,y1), bottom-right(x2,y2).""" return prefix_sum[x2+1][y2+1]-prefix_sum[x1][y2+1]-prefix_sum[x2+1][y1]+prefix_sum[x1][y1] # Example usage: input_matrix=[[3,0,1,4],[2,8,7,5],[4,6,9,1]] ps=build_prefix_sum(input_matrix) print(query_submatrix_sum(ps,1,1,2,2)) # Output should be 30 which is the sum inside this area. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值