计算条件熵代码(Python)

首先给出条件熵的定义,摘自维基百科:

If H(Y|X=x) is the entropy of the discrete random variable Y conditioned on the discrete random variable X taking a certain value x, then H(Y|X) is the result of averaging H(Y|X=x) over all possible values x that X may take.

大致可以理解为在条件X下,Y的条件概率分布对X的期望。

计算公式如下,摘自维基百科:


由于没有在网上找到相关计算条件熵的代码,于是我根据以上公式自己写了一个Python版本的代码。

首先给出一段待计算的数据。这里给出的是两个随机变量间的具体数量分布,并转换为联合概率密度。

data=np.array([[0,1963,0],
               [0,363,0],
               [0,425,0],
               [0,936,2],
               [1265,256,4755],
               [0,95,0],
               [98,36,1374],
               [0,1751,0]])
totalval=float(np.sum(data))
data=(data)/totalval    #求联合概率分布
print data

具体计算代码如下:

def calcConditionalEnt(data):
    #先计算条件熵的每一项
    def calcSingleEnt(p_xy,p_x):
        return p_xy*math.log((p_x/p_xy),2) if p_xy!=0 else 0

    ConditionEnt=0
    for i in range(len(data[0])):
        colsum=map(sum,zip(*data))  #各列求和
        for j in range(len(data)):
            ConditionEnt+=calcSingleEnt(data[j][i],colsum[i])   #各项熵求和

    return ConditionEnt





### 回答1: 传递熵是一种用来衡量两个随机变量之间相关性的度量方法。在Python中,可以通过以下代码计算传递熵: 首先,需要安装SciPy库以便使用熵函数和条件熵函数: ```python pip install scipy ``` 接下来,导入所需的库: ```python import numpy as np from scipy.stats import entropy ``` 定义一个函数来计算传递熵: ```python def transfer_entropy(x, y, lag): # 计算x和y的历史窗口 history_x = x[:-lag] history_y = y[lag:] # 计算条件熵 cond_entropy = entropy(y, x) # 计算传递熵 transfer_entropy = cond_entropy - entropy(y, history_x) return transfer_entropy ``` 然后,准备要计算传递熵的随机变量x和y的数据,例如: ```python x = np.random.randint(0, 2, size=100) # 随机生成100个0或1的数作为x y = np.random.randint(0, 2, size=100) # 随机生成100个0或1的数作为y ``` 调用函数计算传递熵: ```python lag = 1 # 选择滞后的步长 te = transfer_entropy(x, y, lag) print(f"传递熵: {te}") ``` 这样就可以计算出随机变量x和y之间的传递熵。请注意,传递熵的计算还涉及到滞后步长的选择,可以根据实际问题进行调整。 ### 回答2: 传递熵(Transfer Entropy)是一种用于分析因果关系的信息理论方法,它可以测量某个时序信号A对另一个时序信号B的影响程度。以下是一个用Python编写的简单传递熵计算代码示例: ```python import numpy as np def transfer_entropy(source, target, k): n = len(source) p_source_target = np.zeros((k+1, k+1)) p_source = np.zeros(k+1) p_source_prev = np.zeros(k+1) p_source_target_prev = np.zeros((k+1, k+1)) te = 0 for i in range(k, n): # 计算条件概率p(A_t|A_t-1) p_source_target[int(source[i]), int(source[i-k])] += 1 p_source[int(source[i-k])] += 1 # 计算递推条件概率p(A_t|A_t-1, B_t-1) p_source_target_prev[int(source[i]), int(source[i-k]), int(target[i-k])] += 1 # 计算传递熵TE(A->B) = ∑ p(A_t|A_t-1) * log2(p(A_t|A_t-1) / p(A_t|A_t-1, B_t-1)) for j in range(k+1): p_s_t = p_source_target[int(source[i]), j] / p_source[j] p_s_t_prev = p_source_target_prev[int(source[i]), j, int(target[i-k])] / p_source_target_prev[int(source[i]), j].sum() if p_s_t != 0 and p_s_t_prev != 0: te += p_source_target[int(source[i]), j] / n * np.log2(p_s_t / p_s_t_prev) return te # 示例用法 source = [0, 1, 1, 0, 1, 0, 0, 1, 1, 0] target = [0, 1, 0, 1, 0, 1, 1, 0, 0, 1] k = 2 te = transfer_entropy(source, target, k) print('传递熵为:', te) ``` 以上代码实现了一个简单的传递熵计算函数`transfer_entropy`。示例中使用的输入信号`source`表示源信号,`target`表示目标信号,`k`表示历史窗口的大小。函数返回传递熵的值,并通过`print`语句将其打印出来。 ### 回答3: 传递熵(Transfer Entropy)是一种用于衡量两个时间序列之间的非线性因果关系的方法。在Python中,我们可以使用pyitlib库来计算传递熵。 首先,需要安装pyitlib库。可以使用命令`pip install pyitlib`进行安装。 接下来,我们可以使用以下代码计算两个时间序列之间的传递熵: ```python from pyitlib import discrete_random_variable as drv # 定义时间序列X和Y(作为示例,这里假设X和Y都是离散的) X = [1, 0, 1, 0, 1, 1, 0, 1, 0, 0] Y = [0, 1, 1, 0, 1, 0, 1, 1, 1, 0] # 计算传递熵 transfer_entropy = drv.transfer_entropy(X, Y) # 打印结果 print("传递熵:", transfer_entropy) ``` 在上面的示例代码中,我们首先导入了pyitlib库中的discrete_random_variable模块,然后定义了两个时间序列X和Y作为示例数据。然后,我们使用`drv.transfer_entropy(X, Y)`函数来计算X到Y的传递熵,并将结果赋值给`transfer_entropy`变量。最后,我们打印出传递熵的值。 需要注意的是,以上代码假设X和Y都是离散的时间序列。如果X和Y是连续的时间序列,则需要先进行离散化处理,才能使用pyitlib库来计算传递熵。 希望以上代码能帮助到你。如果还有其它问题,请随时问我。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值