Pandas数据分析学习总结

1,如何在Pandas中添加一行数据:
 

append()函数:

	    import pandas as pd
	    data = {'Name': ['John', 'Emma'],
	            'Age': [25, 28]}
	    df = pd.DataFrame(data)
	    new_row = {'Name': 'Michael', 'Age': 30}
	    # 将新行数据添加到数据框 df 末尾
	    df = df.append(new_row, ignore_index=True)
	    print(df)
	    输出结果:
	          Name  Age
	    0     John   25
	    1     Emma   28
	    2  Michael   30

loc[]函数

import pandas as pd
data = {'Name': ['John', 'Emma'],
        'Age': [25, 28]}
df = pd.DataFrame(data)
new_row = {'Name': 'Michael', 'Age': 30}
# 使用 loc[] 函数添加一行新数据
df.loc[2] = new_row
print(df)
输出结果:
      Name  Age
0     John   25
1     Emma   28
2  Michael   30

2,如何在Pandas中添加一列数据:

索引方式

import pandas as pd
data = {'Name': ['John', 'Emma'],
        'Age': [25, 28]}
df = pd.DataFrame(data)
# 添加一列新数据
df['Gender'] = ['Male', 'Female']
print(df)
输出结果:
   Name  Age  Gender
0  John   25    Male
1  Emma   28  Female

在上述示例中,我们首先创建了一个数据框df,包含两列数据。然后,我们直接通过给数据框指定一个新的列名Gender,并赋予相应的值来添加一列新数据。

assign()函数

assign()函数用于添加计算得到的新列数据。

下面是一个示例:

import pandas as pd
data = {'Name': ['John', 'Emma'],
        'Age': [25, 28]}
df = pd.DataFrame(data)
# 使用 assign() 函数添加一列新数据
df = df.assign(Gender=['Male', 'Female'])
print(df)

输出结果:
   Name  Age  Gender
0  John   25    Male
1  Emma   28  Female

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值