引子:这个系列的文章中间隔了一段时间没有更新,抱歉让各位久等了。主要是前一阵子一直在忙活出版我的新书(《 数字图像处理:技术详解与Visual C++实践》)。现在还要继续我们关于KAZE算法的话题。这个算法试验的效果是非常理想的,在尺度不变特征匹配算法领域异军突起,是继SIFT算法后的有一个重大进展和突破。(SURF相比SIFT效率提升了不少,但还是没有跳出SIFT的框框)。但是KAZE算法对于很多普通读者而言是非常难于理解的。其实SIFT已经很复杂了,但是里面用到的仍然属于数字图像处理领域中比较基本的方法(例如DoG,直方图等等)。但是KAZE的难度在一开篇就被提到了一个非常艰深的难点上,主要是PM方程(或者说是正则化的PM方程),然后是AOS。很多人各种百度都搞不清AOS(加性算子分裂)到底为何物!如果这两个问题不搞清楚的话,后面想深入理解KAZE,几乎是不可能的。我们也都知道对于尺度不变特征检测算法,构建尺度空间是至关重要的一步。所以这一系列的文章花费了很多笔墨着重帮大家梳理理解这部分内容(其实这部分东西在原文中只占一小部分,那是因为这些都是前人的成果,并非KAZE作者的创新,但是若非站在巨人肩上,恐怕也是比较那做出KAZE的)。特别是在我的新书里,我也专门
一点一滴完全突破KAZE特征检测算法(4)
最新推荐文章于 2024-09-14 07:45:22 发布
本文详细探讨了KAZE算法,特别关注P-M扩散方程和AOS(加性算子分裂)的概念,这些都是理解KAZE算法的关键。KAZE在尺度不变特征匹配领域表现出色,是对SIFT的重大突破。文章旨在帮助读者克服理解KAZE的难点,并指出这些概念在构建尺度空间中的重要性。此外,作者强调了PM方程和AOS在数字图像处理领域的价值,它们在作者的新书中得到了深入讨论。
摘要由CSDN通过智能技术生成