一:KAZE算法的由来
在2012年,ECCV会议中出现了一种比SIFT更稳定的特征检测算法。KAZE的取名是为了纪念尺度空间分析的开创者—日本学者Iijima。KAZE在日语中是‘风’的谐音,寓意是就像风的形成是空气在空间中非线性的流动过程一样,KAZE特征检测是在图像域中进行非线性扩散处理的过程。
二:KAZE算法的原理
(1)尺度空间的概念(Scale space)
尺度空间是在计算机视觉理论里面发展出来的的一个用来表示多尺度信号的理论。它通过将原始图像进行平滑,从而得到多尺度下的图像结构,图像结构取决于尺度参数t [1]。
以高斯卷积核为例, 高斯卷积核如下所示:
G(xi,yi,σ)=12πσ2exp(−(x−xi)2+(y−yi)22σ2)
高斯卷积核的图像为:
将高斯卷积核与原图像做卷积,可以得到一族图像:
L(xi