自然语言处理中的N-Gram模型详解

本文深入探讨了N-Gram模型在自然语言处理中的应用,包括模糊匹配中的字符串距离计算和评估语句合理性。通过实例展示了如何利用N-Gram计算字符串间距离,并介绍了N-Gram在评估句子概率中的作用。此外,还提到了数据平滑算法在解决N-Gram模型中数据稀疏问题的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理。另外一方面,N-Gram的另外一个作用是用来评估两个字符串之间的差异程度。这是模糊匹配中常用的一种手段。本文将从此开始,进而向读者展示N-Gram在自然语言处理中的各种powerful的应用。

  • 基于N-Gram模型定义的字符串距离
  • 利用N-Gram模型评估语句是否合理
  • 使用N-Gram模型时的数据平滑算法

欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。


基于N-Gram模型定义的字符串距离

在自然语言处理时,最常用也最基础的一个操作是就是“模式匹配”,或者称为“字符串查找”。而模式匹配(字符串查找)又分为精确匹配模糊匹配两种。

所谓精确匹配&#x

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值