基于字典学习的图像去噪研究与实践

机器学习在图像处理中有非常多的应用,运用机器学习(包括现在非常流行的深度学习)技术,很多传统的图像处理问题都会取得相当不错的效果。今天我们就以机器学习中的字典学习(Dictionary Learning)为例,来展示其在图像去噪方面的应用。文中代码采用Python写成,其中使用了Scikit-learn包中提供的API,读者可以从【2】中获得演示用的完整代码(Jupyter notebook)。

一、什么是字典学习?

字典学习 (aka Sparse dictionary learning) is a branch of signal processing and machine learning. 特别地,我们也称其为a representation learning method. 字典学习 aims at finding a sparse representation of the input data (also known as sparse coding or 字典) in the form of a linear combination of basic elements as well as those basic elements themselves。These elements are called atoms and they compose a dictionary。字典中,some training data admits a sparse representation。The sparser the representation, the better the dictionary。如下图所示,现在我们有一组自然图像,我们希望学到一个字典,从而原图中的每一个小块都可以表示成字典中少数几个atoms之线性组合的形式。

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览