- 博客(59)
- 资源 (2)
- 收藏
- 关注
原创 窗函数
看到一篇很好地短文解释何为窗函数,整理如下:我们知道数字信号处理的主要数学工具是傅里叶变换,而傅里叶变换是研究整个时间域和频率域的关系,当运用计算机实现测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。具体做法是从信号中截取一个时间片段,然后用截取的信号时间片段进行周期延拓处理,得到虚拟的无限长信号,再进行傅里叶变换和相关分析。无限长信号被截断后,其频谱发生了畸...
2019-10-25 23:08:42 3640 1
原创 如何理解typedef void
首先介绍大家比较熟悉的typedefint i;//定义一个整型变量itypedef myInt int;myInt j;//定义一个整型变量j上面介绍得是我们常用的比较简单的typedef的用法,下面首先介绍一下函数指针。函数指针的形式:形式1:返回类型(*函数名)(参数表)#include <iostream>using namespace std;//定义一...
2019-10-07 16:02:15 755 1
原创 lsqnonlin函数_matlab非线性最小二乘函数
函数语法x = lsqnonlin(fun,x0)函数用于:解决非线性最小二乘(非线性数据拟合)问题解决非线性最小二乘曲线拟合问题的形式变量x的约束上下限为ub和lb,x = lsqnonlin(fun,x0)从x0点开始,找到fun中描述的函数的最小平方和。函数fun应该返回一个向量(或数组),而不是值的平方和。(该算法隐式地计算了fun(x)元素的平方和。)举例:从指数衰减...
2019-09-29 17:40:41 23336 5
原创 lsqnonneg函数_matlab中线性最小二乘问题求解
函数语法x = lsqnonneg(C,d)求解非负最小二乘曲线拟合问题的形式举例:为这个问题准备一个C矩阵和d向量目标函数:min||Cx−d||C = [0.0372 0.2869 0.6861 0.7071 0.6233 0.6245 0.6344 0.6170]; d = [0.8587 0.1781 ...
2019-09-29 17:31:20 4830
原创 fmincon函数求极值
matlab中的函数fmincon可用于求可以求取多元函数的极值,其约束包括五种:1、线性不等式约束;2、线性等式约束;3、变量约束;4、非线性不等式约束;5、非线性等式约束。其形式如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)求解问题的标准型为min F(X)s.tAX <= b(线性不等式约束)AeqX = beq(线性等...
2019-09-29 17:18:53 2373 1
原创 matlab 全部的随机数函数
(一)Matlab内部函数a. 基本随机数Matlab中有两个最基本生成随机数的函数。1.rand()生成(0,1)区间上均匀分布的随机变量。基本语法:rand([M,N,P …])生成排列成MNP… 多维向量的随机数。如果只写M,则生成MM矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:rand(5,1) %生成5个随机数排列的列向量,一般用这种格式rand(5) %生成5...
2019-07-19 21:49:45 906
原创 CSI信息
CSI(Channel State Information,信道状态信息)所谓的CSI,在无通信领域,就是通信链路的信道属性。它描述了信号在每条传输路径上的衰弱因子,如信号散射(Scattering),环境衰弱(fading,multipath fading or shadowing fading),距离衰减(power decay of distance)等信息。CSI的主要用途是通过提供当前...
2019-04-13 17:02:34 4807
原创 MATLAB中unwrap函数
unwrap函数检查出数据相位跳变,并纠正跳变完整的格式是unwrap(pha,tol,dim)tol就是标准,在默认的情况下,这个标准是pi也就是说unwrap在检查到数据前后两点的差距在超过tol的时候,就认为有跳变,然后就回处理数据,让后面的数据加2pi或者减2pi是数据连续,大部分情况下使用pi这个标准都比较合适,所以第二个参数可以缺省又由于unwrap函数不单能对数列作用,还能...
2019-04-08 17:49:28 4590
原创 CSITOOL安装接收CSI数据
Csitool安装一:首先是工具的安装,详情参见官网https://dhalperi.github.io/linux-80211n-csitool/faq.html作者已经描述得很详细,但是还是会出一些问题。安装过程中穿插一些小提示,有些可以不去管它,按照步骤一步步输入命令就行,下面我列出我觉得必要的步骤,大家一步步照着输到终端就行1. Prerequisitessudo apt-ge...
2019-04-06 12:34:23 5557 2
原创 ubuntu连不上wifi解决办法
一般是驱动问题,要么误删要么缺失顺着这个帖子往下看就行https://www.jianshu.com/p/8b29954ab590
2019-04-02 21:57:34 5744
原创 SpotFi详解
注:此文档作为论文的注解,与论文配合着看最好,注解中有些次要的东西省去了,所以单看起来可能过于跳跃,一定要同时看看原文啊,另外,有些句子还是原汁原味的好,帮助理解Spotfi工作分三步1 用一个目标到达AP的信号来估计不同多径分量的AOA和TOF,通过使用商用APs的CSI信息2估计每一个AOA和TOF对是直达路径所产生的概率3 通过以上信息计算最有可能产生已知的观察到的RSSI和估计出的...
2019-03-29 22:31:50 8236 24
原创 安装XDS110驱动时系统找不到指定文件
最近在弄一个Ti的板子,两个XDS110驱动死活安不上,问题大概长这样(网上扣的图,博主问题已解决,找不到图啦)网上搜寻一番发现是电脑系统问题,本人是ghost版win7,即阉割版,很多功能被删减掉,一些不要的驱动文件缺失导致。正版系统就不会有这问题,所以在此也建议大家尽量安装原版windows系统。好了既然现在是阉割版系统,又不想重装系统,怎么破???简单,把必要的文件补上就ok了。博主...
2019-03-25 10:44:32 4696 3
原创 MATLAB对一个二维矩阵画三维图
1 准备好二维矩阵,比如我这有个3x16的矩阵叫SFW12 画三维图,一句代码就OKmesh(SFW1)3 结果如下
2019-03-14 12:25:04 19466 4
原创 使用smo算法编写svm对CIFAR-10数据分类
公式太难打了,弄成图片,可能不太美观,但知识没变味3:实验内容3.1 提取hog特征本实验的核心在于设计svm算法,因此提取特征使用库函数实现,最主要代码如下from skimage import feature as ftft.hog(data[i],feature_vector=True,block_norm='L2-Hys',transform_sqrt=True)3....
2019-01-23 15:37:18 857 2
原创 搭建hadoop和spark分布式环境
root权限密码:本机&lt;15 Ubuntu的密码是:204Spark的分布环境需要基于HDFS,所以在装spark之前我们需要先配置hadoop分布式系统:1.实验做啥:基本:配置完成hadoop环境延伸:配置完成spark环境(实验二的部分内容)Hadoop 集群的安装配置大致为如下流程:1.选定一台机器作为 Master2.在 Master 节点上配置 hadoop 用户、...
2019-01-10 13:04:52 1166
原创 用SVD和字典学习方法重建图像(cifar-10图片集)
1:SVD算法1.1 算法原理奇异值分解(SVD)是线性代数中一种重要的矩阵分解。假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。如此则存在一个分解使得M=UΣV∗M=UΣV^*M=UΣV∗其中U是m×m阶酉矩阵;Σ是m×n阶非负实数对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是...
2019-01-09 22:10:40 3574 10
原创 贝叶斯决策理论对CIFAR-10数据图像分类
1:数据集介绍CIFAR-10 是一个用于普世物体识别的数据集,分为airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck共10 类。共60000张32*32大小的彩色RGB图像,分为10类,50000张用于训练,10000张用于测试。训练集分为5个训练batches,测试集分为1个测试batch。每个batch有10类,每类...
2019-01-09 21:43:36 3429 4
原创 Anaconda3+Python3.6搭建Tensorflow
安装Tensorflow有两种方式:pip及Anaconda一:pippip:本地pip直接在您的系统上安装TensorFlow,而无需通过虚拟环境。由于本地pip安装不在单独的容器中,因此pip安装可能会干扰系统上其他基于Python的安装。但是,如果您了解pip和Python环境,则本地pip安装通常只需要一个命令!此外,如果使用本地pip进行安装,则用户可以从系统上的任何目录运行Tens...
2019-01-09 21:12:29 8892
原创 heatmap(热图)
热图有时候叫热区图或者热力图,都是用于表现某种事物密集度的图形化显示。我写的这个没有画底图,不然会更好趣,比如一个键盘,一张房屋平面图,或者一张Google地图,拿它做什么用,完全取决于你的需要。二、原理1、首先可以参考下面几个链接[heatmap.js 一个用canvas画热力图的利器] http://www.cnblogs.com/bdqlaccp/archive/2012/09/12...
2018-12-16 22:06:53 6336
原创 Matplotlib:给子图添加colorbar(颜色条或渐变色条)
描述当我们给图配渐变色时,常常需要在图旁边把colorbar显示出来,这里记一下当有多个子图时如何显示colorbar操作以下操作均在Jupyter notebook中完成,且首段均有以下代码In [1]: %matplotlib inline import numpy as np import matplotlib.pyplot as plt...
2018-12-16 20:30:10 20849 2
原创 《Tensorflow 实战google深度学习框架》第二版源代码
<<Tensorflow 实战google深度学习框架–第二版>>完整资料github地址:https://github.com/caicloud/tensorflow-tutorial源代码链接:https://github.com/caicloud/tensorflow-tutorial/tree/master/Deep_Learning_with_Tensor...
2018-12-05 14:49:44 901
转载 LightGBM常用模板
LightGBM是个快速的、分布式的、高性能的基于决策树算法的梯度提升框架。可用于排序、分类、回归以及很多其他的机器学习任务中lgb.LGBMClassifier()用于分类模板一:import lightgbm as lgbprint("LGB test")clf = lgb.LGBMClassifier( boosting_type='gbdt', num_leave...
2018-12-01 12:07:43 1608
转载 sklearn中, fit,fit_transform,transform的区别与联系
文章乃转载scikit-learn提供了一系列转换库,他们可以清洗,降维,提取特征等。在数据转换中有三个很重要的方法,fit,fit_transform,transformss=StandardScaler()X_train = ss.fit_transform(X_train)X_test = ss.transform(X_test)初学时候好奇为何,训练样本用fit_transfo...
2018-11-29 21:21:10 1091
原创 WLAN定位技术——(无线信号定位2)
1:WLAN技术简介WLAN即无线局域网,现已被广泛应用于各个领域中,WLAN拥有很多的实现协议,其中最为著名的便是无线保真技术——WIFI。如今WiFi技术研究比较成熟,主要用于无线数据的传输。在日常生活中,基于WiFi技术的各种应用已经十分普及,在室内定位领域,WiFi是目前最为热门的技术之一。2:WLAN定位系统组成基于WLAN的室内定位系统主要包括三个部分:终端无线网卡,位置固定的W...
2018-11-26 21:54:14 6343
原创 K-SVD字典学习算法
1.提出问题:什么是稀疏表示假设我们用一个MN的矩阵表示数据集Y,每一行代表一个样本,每一列代表样本的一个属性,一般而言,该矩阵是稠密的,即大多数元素不为0。稀疏表示的含义是,寻找一个系数矩阵X(KN)以及一个字典矩阵D(MK),使得DX尽可能的还原Y,且X尽可能的稀疏。X便是Y的稀疏表示。算法思想算法求解思路为交替迭代的进行稀疏编码和字典更新两个步骤. K-SVD在构建字典步骤中,K-S...
2018-11-24 12:53:33 3278 3
原创 无迹卡尔曼滤波器(UKF)
无迹卡尔曼滤波器(UKF) UKF依然没有脱离KF的框架。只不过对下一时刻状态的预测方法变成了sigma点集的扩充与非线性映射。这样做有两个优点:1、避免了复杂非线性函数雅可比矩阵的复杂运算;2、保证了非线性系统的普遍适应性。此外,由于高斯分布sigma点集的扩展,使高斯分布的噪声得到抑制。 预测过程: 更新过程: 在准确建模的前提下,KF,EKF和UKF都有不错的表现。但...
2018-11-23 18:09:09 9748 3
原创 np.mean(data, axis=0)函数
今天学习字典学习时碰到这么句代码,np.mean(data, axis=0),查了一下,还是记下来,要不以后又忘了, 下面是例程import numpy as npX = np.array([[1, 2], [4, 5], [7, 8]])print np.mean(X, axis=0, keepdims=True)print np.mean...
2018-11-22 17:13:41 30758 6
原创 字典学习与稀疏表示
假设我们用一个M*N的矩阵表示数据集X,每一行代表一个样本,每一列代表样本的一个属性,一般而言,该矩阵是稠密的,即大多数元素不为0。 稀疏表示的含义是,寻找一个系数矩阵A(K*N)以及一个字典矩阵B(M*K),使得B*A尽可能的还原X,且...
2018-11-22 17:06:36 4064 1
转载 奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com。也可以加我的微博: @le...
2018-11-22 10:43:56 751
原创 基于PCA和贝叶斯决策对CIFAR-10数据图像分类
1:数据集介绍CIFAR-10 是一个用于普世物体识别的数据集,分为airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck共10 类。共60000张32*32大小的彩色RGB图像,分为10类,50000张用于训练,10000张用于测试。训练集分为5个训练batches,测试集分为1个测试batch。每个batch有10类,每类...
2018-11-20 22:34:24 4977 4
原创 ubuntu用户目录安装pip(无root权限)
在ubuntu系统中,可以在终端使用pwd来打印当前目录在使用pip安装python包或者更新pip时要特别注意下载的目录比如 在实验室拿到的服务器账号只是一个普通用户,没有root权限,就会导致很多软件包的安装受到阻碍。在用户目录安装pip的方法为 $ wget https://bootstrap.pypa.io/get-pip.py $ python get-pip...
2018-10-31 22:33:29 1592
转载 最大期望算法 (EM算法)
注:文章出处:https://www.cnblogs.com/yahokuma/p/3794905.html算法定义&amp;nbsp; &amp;nbsp; &amp;nbsp; 最大期望算法(Exception Maximization Algorithm,后文简称EM算法)是一种启发式的迭代算法,用于实现用样本对含有隐变量的模型的参数做极大似然估计。已知的概率模型内部存在隐含的变量,导致了不能直接用极大似然法来...
2018-10-21 16:54:05 3195
转载 numpy-array
文章转自基础NumPy的主要对象是齐次多维数组。它是一个元素表(通常是数字),所有相同的类型,由正整数的元组索引。在NumPy维度被称为轴(axis)。轴的数量是等级(rank)。例如,三维空间中一个点的坐标[1,2,1]是一个等级为1的数组,因为它具有一个坐标轴。该轴的长度为3.在下面的示例中,该数组具有等级2(它是二维的)。第一维(轴)的长度为2,第二维的长度为3。[[ 1. , 0...
2018-10-20 22:19:47 860
原创 使用爬虫刷blog访问量 随机代理IP 随机user_agent
好羞耻地写下这篇博客,不过大家一看博主这可怜的访问量,就知道博主十足好孩子!!!呵呵,莫道石人一只眼,挑动黄河天下反首先了解一下常见反爬虫的检测方法频率监测:有些网站会设置一种频率监测的机制,对于同一IP,若在一定时间内访问的速度超过了设置的阈值,那么便会判定该IP的源头是一个爬虫机器人,从而限制访问频率或暂时禁止IP对其的访问频数监测:与1有些类似,但是是对用户访问页面的数量进行统计,并在...
2018-10-20 20:53:53 3959
超声波雷达测距系统
2018-09-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人