chatgpt解决建表维度处理逻辑

需求

现有店铺汇总表:小时日月三种维度划分,内涵客流数据销售数据。
需要根据数据计算出服务区南北区每个小时,日,月,年四种维度的客单价客单转换率,服务区每个店铺的每个小时,日,月,年四种维度的客单价客单转换率。
在这里插入图片描述

  1. 计算服务区南北区每个小时、日、月、年的客单价和客单转化率:
-- 按小时统计客单价和客单转化率
SELECT
  dimension,
  region,
  HOUR(partition_date) AS hour,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'hour'
GROUP BY dimension, region, HOUR(partition_date);

-- 按日统计客单价和客单转化率
SELECT
  dimension,
  region,
  partition_date AS day,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'day'
GROUP BY dimension, region, partition_date;

-- 按月统计客单价和客单转化率
SELECT
  dimension,
  region,
  CONCAT_WS('-', YEAR(partition_date), LPAD(MONTH(partition_date), 2, '0')) AS month,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'month'
GROUP BY dimension, region, CONCAT_WS('-', YEAR(partition_date), LPAD(MONTH(partition_date), 2, '0'));

-- 按年统计客单价和客单转化率
SELECT
  dimension,
  region,
  YEAR(partition_date) AS year,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'year'
GROUP BY dimension, region, YEAR(partition_date);

  1. 计算每个店铺每个小时、日、月、年的客单价和客单转化率:
-- 按小时统计客单价和客单转化率
SELECT
  dimension,
  region,
  store_id,
  HOUR(partition_date) AS hour,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'hour'
GROUP BY dimension, region, store_id, HOUR(partition_date);

-- 按日统计客单价和客单转化率
SELECT
  dimension,
  region,
  store_id,
  partition_date AS day,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'day'
GROUP BY dimension, region, store_id, partition_date;

-- 按月统计客单价和客单转化率
SELECT
  dimension,
  region,
  store_id,
  CONCAT_WS('-', YEAR(partition_date), LPAD(MONTH(partition_date), 2, '0')) AS month,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'month'
GROUP BY dimension, region, store_id, CONCAT_WS('-', YEAR(partition_date), LPAD(MONTH(partition_date), 2, '0'));

-- 按年统计客单价和客单转化率
SELECT
  dimension,
  region,
  store_id,
  YEAR(partition_date) AS year,
  AVG(sales_amount / customer_count) AS average_order_value,
  SUM(CASE WHEN sales_amount > 0 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM store_summary
WHERE dimension = 'year'
GROUP BY dimension, region, store_id, YEAR(partition_date);

以上示例代码假设您的店铺汇总表中包含了正确的数据,并按照维度和分区进行了正确的分组。您可以根据实际情况对清洗语句进行修改和优化。
希望这些示例能满足您的需求。如果您有任何其他问题,请随时提问。

在这里插入图片描述
在这里插入图片描述
有意思的是对他的回答进行反问,他会把表名改一下重新发回来,并没有对sql进行实际改变。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
结论:对于简单的业务逻辑处理,建表sql,数据清理sql。chatgpt能给出答案的,就是结果必须进行修改,在代码基础上修改的话是可以节省一点对于开发时间,但是和手动开发时间相差不多。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值