力扣每日一题:最长递增子序列

力扣每日一题:最长递增子序列

1.问题描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

2.示例

image-20210726100059477

3.问题分析

3.1 动态规划

d p [ i ] dp[i] dp[i]为考虑前 i i i个元素,以 n u m s [ i ] nums[i] nums[i]结尾(包括 n u m s [ i ] nums[i] nums[i])的最长子序列长度。

从小到大依次计算 d p [ 0 ] , d p [ 1 ] , … … , d p [ n ] dp[0],dp[1],……,dp[n] dp[0],dp[1],,dp[n],再计算 d p [ i ] dp[i] dp[i]前已经计算了 d p [ 0 ] , … … d p [ i − 1 ] dp[0],……dp[i-1] dp[0],dp[i1],状态转移方程为i:
d p [ i ] = m a x ( d p [ j ] ) + 1 , 其 中 0 < j < i , 且 n u m s [ j ] < n u m s [ i ] dp[i] = max(dp[j])+1,其中0<j<i,且nums[j]<nums[i] dp[i]=max(dp[j])+1,0<j<inums[j]<nums[i]
这里没有对 n u m s [ j ] 和 n u m s [ i ] nums[j]和nums[i] nums[j]nums[i]的关系中取等于号,是因为这里要求的关系是严格的递增,而不仅仅是递增。

而最终的答案则是:
r e s u l t = m a x ( d p [ i ] ) , 其 中 0 ≤ i < n result = max(dp[i]),其中0≤i<n result=max(dp[i]),0i<n
综上所述,我们要做的是每次选择计算 d p [ i ] dp[i] dp[i]时,对 d p [ 0 ] , … … , d p [ i − 1 ] dp[0],……,dp[i-1] dp[0]dp[i1]进行遍历,找到有 n u m s [ j ] < n u m s [ i ] nums[j]<nums[i] nums[j]<nums[i]且有 d p [ j ] + 1 > d p [ i ] dp[j]+1>dp[i] dp[j]+1>dp[i] j j j值,更新 d p [ i ] dp[i] dp[i]的值,最后对整个 d p [ n ] dp[n] dp[n]数组寻找最大值,得到最终的答案。

程序如下:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
		int dp[nums.size()];
		for(int i=0; i<nums.size(); i++){
			dp[i] = 1;
			for(int j=0; j<i; j++){
				if(dp[j]+1>dp[i]&&nums[j]<nums[i]){
					dp[i] = dp[j] + 1;
				}
			}
		} 
		return *max_element(dp, dp+nums.size());
    }
};

3.2 贪心+二分

上述的动态规划的时间复杂度较高,为 O ( n 2 ) O(n^2) O(n2),下面给出的算法是基于贪心和二分的算法,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)
LeetCode给出的官方题解不太好理解,所以转载下面这篇通过纸牌的讲解:从最长递增子序列学会如何推状态转移方程 (qq.com)

程序如下:

public int lengthOfLIS(int[] nums) {
    int[] top = new int[nums.length];
    // 牌堆数初始化为 0
    int piles = 0;
    for (int i = 0; i < nums.length; i++) {
        // 要处理的扑克牌
        int poker = nums[i];

        /***** 搜索左侧边界的二分查找 *****/
        int left = 0, right = piles;
        while (left < right) {
            int mid = (left + right) / 2;
            if (top[mid] > poker) {
                right = mid;
            } else if (top[mid] < poker) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        /*********************************/

        // 没找到合适的牌堆,新建一堆
        if (left == piles) piles++;
        // 把这张牌放到牌堆顶
        top[left] = poker;
    }
    // 牌堆数就是 LIS 长度
    return piles;
}

这里的二分用的是搜索左侧边界的二分查找。详情可以看二分查找的博客:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blanche117

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值