力扣300——最长递增子序列(动态规划,贪心+二分)

题目描述(中等)

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

1 <= nums.length <= 2500
-104 <= nums[i] <= 104

进阶:
你可以设计时间复杂度为 O(n2) 的解决方案吗?
你能将算法的时间复杂度降低到 O(n log(n)) 吗?

思路(动态规划)

标准动态规划思路,dp数组的含义为:dp[i]是以i结尾的最长递增子序列的长度
对于每个新增位置来说,如果前面的数比他小,那以他结尾的递增子序列就是前面那个数+1
举例来说:对于 2,5,4
以2结尾,长度为1;
以5结尾,之前的2<5,递增子序列为2时的递增子序列+1
以4结尾,之前的2<4,递增子序列为2时的递增子序列+1
之前的5>4,对递增子序列无影响
通过两重循环,不断更新dp[i],可得转移方程为
如果nums[j] < nums[i] 更新dp[i] = max(dp[i], dp[j] + 1)
最后找到dp中的最大值,即为答案

代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int ans = 1;
        int n = nums.size();
        vector<int> dp(n,1);
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < i; j++) {
                if(nums[j] < nums[i]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
        }
        for(int i = 0; i < n; i++) {
            ans = max(ans,dp[i]);
        }
        return ans;
    }
};

思路(贪心+二分)

参考了官方题解的思路
如果我们要使上升子序列尽可能的长,则我们需要让序列上升得尽可能慢,因此我们希望每次在上升子序列最后加上的那个数尽可能的小。我们维护一个数组 d[i] ,表示长度为 i 的最长上升子序列的末尾元素的最小值,用ans记录目前最长上升子序列的长度,起始时为1,d[1] = nums[0]

可以这样理解,我要做的局部最优,就是给定子序列长度,其末尾元素最小;这样如果新来一个较大的数,则可以最大程度更新递增子序列的长度,则就是全局最优解。

举例来说,对于[10,9,2,5,3,7,101,18],逐位遍历,维护d[i],d[0]不用
第一步:插入10,长度为1,此时d = {0,10}
第二步:9比d[1]小,不能使递增子序列长度增加,但9比d[1]小,可以更新长度为1子序列的末尾最小值,此时d = {0,9}
第三步:2比d[1]小,同理第二步,更新d[1],此时d = {0,2},此时长度为1的递增子序列末尾最小值为2
第四步:5比d[1]大,可以加入d,增加递增子序列长度,此时d = {0,2,5},如果前面没有更新d[1]=2,这里判断就会无法加入5
第五步:3比d[2]小,不能增加长度,但比d[1]大,可以更新长度为2的递增子序列末尾最小值为3,此时d = {0,2,3}
第六步:7比d[2]大,可以增加长度,d = {0,2,3,7}
第七步:101比d[3]大,可以增加长度,d = {0,2,3,7,101}
第八步:18比d[4]小,不能增加长度,但比d[3]大,可以更新长度为4的递增子序列末尾最小值为18,此时d = {0,2,3,7,18}

样例到此结束,最长递增子序列长度为4,虽然[2,3,7,101],[2,3,7,18]长度都为4,但如果原序列再多一个元素25,此时最长递增子序列就应为[2,3,7,18,25],因为本方法保证长度为4时末尾元素最小,则新增一个可增加递增子序列的元素时,必然能够加入,可以获得全局最优解。

证明利用反证法:对于长度为n的递增子序列,保证其是所有长度为n的递增子序列所有组合中末尾最小的那一组合。如果新增元素不能加入,但最大递增子序列长度为n+1;说明新增元素小于d[n],任何其他递增子序列也都无法加入,与递增子序列矛盾。

算法实现上,对于d来说,是一个递增序列;而每次对于新加入元素x,在d的何处更新,则转化为二分查找问题,d[i]<x且d[i+1]>x就是x的归宿,同时还要加一条对x<d[1]更新d[1]的判断

代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int ans = 1;
        int n = nums.size();
        if(n == 0) return 0;
        vector<int> d(n+1, 0);
        d[1] = nums[0];
        for(int i = 1; i < n; i++) {
            if(nums[i] > d[ans]) {
                ans++;
                d[ans] = nums[i];
            }
            else {
                int l = 1, r = ans;
                while(l <= r) {
                    int mid = (l + r) >> 1;
                    if(nums[i] < d[1]) {
                        d[1] = nums[i];
                        break;
                    }
                    if(d[mid-1] < nums[i] && d[mid] > nums[i]) {
                        d[mid] = nums[i];
                        break;
                    }
                    else if(d[mid] < nums[i]) {
                        l = mid +1;
                    }
                    else r = mid - 1;
                }
            }
        }
        return ans;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值