推荐系统测评指标——计算DCG、IDCG以及nDCG的python代码

这篇博客介绍了信息检索和推荐系统中的评价指标nDCG(Normalized Discounted Cumulative Gain),它用于衡量排序列表的质量。nDCG是DCG(Discounted Cumulative Gain)的归一化形式,考虑了相关度和排名。文章提供了DCG、IDCG(理想DCG)和nDCG的计算公式,并给出了用Python实现nDCG的代码示例,便于理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 公式

DCG D C G @ K = ∑ i = 1 K 2 r i − 1 l o g 2 ( i + 1 ) DCG@K=\sum_{i=1}^{K}\frac{2^{r_i}-1}{log_2(i+1)} DCG@K=i=1Klog2(i+1)2ri1其中, K K K是推荐列表的大小;
i i i 是指推荐列表中的第 i i i个推荐项;
r i r_i ri是指推荐项 i i i 是否被用户点击,若点击则为 1 1 1,否则为 0 0 0,在实际测试中,我们通常吧推荐列表中在测试集的推荐项视为被用户点击的推荐项,不在测试集中的推荐项视为未被用户点击的推荐项;

IDCG I D C G @ K = ∑ i = 1 K 2 r i − 1 l o g 2 ( i + 1 ) IDCG@K=\sum_{i=1}^{K}\frac{2^{r_i}-1}{log_2(i+1)} IDCG@K=i=1Klog2(i+1)2ri1注意到IDCG的计算公式与DCG一致,区别在于IDCG是完美的DCG,也即 r i = 1 r_i=1 ri=1的推荐项在推荐列表 K K K头部, r i = 0 r_i=0 ri=0的推荐项在推荐列表 K K K的末尾。

nDCG n D C G @ K = D C G I D C G nDCG@K=\frac{DCG}{IDCG} nDCG@K=IDCGDCGNDCG是归一化后的DCG

2. 代码
import numpy as np

def DCG(A, test_set):
    # ------ 计算 DCG ------ #
    dcg = 0
    for i in range(len(A)):
        # 给r_i赋值,若r_i在测试集中则为1,否则为0
        r_i = 0
        if A[i] in test_set:
            r_i = 1
        dcg += (2 ** r_i - 1) / np.log2((i + 1) + 1) # (i+1)是因为下标从0开始
    return dcg

def IDCG(A, test_set):
    # ------ 将在测试中的a排到前面去,然后再计算DCG ------ #
    A_temp_1 = [] # 临时A,用于存储r_i为1的a
    A_temp_0 = []  # 临时A,用于存储r_i为0的a
    for a in A:
        if a in test_set:
            # 若a在测试集中则追加到A_temp_1中
            A_temp_1.append(a)
        else:
            # 若a不在测试集中则追加到A_temp_0中
            A_temp_0.append(a)
    A_temp_1.extend(A_temp_0)
    idcg = DCG(A_temp_1, test_set)
    return idcg

def NDCG(A, test_set):
    dcg = DCG(A, test_set) # 计算DCG
    idcg = IDCG(A, test_set) # 计算IDCG
    if dcg == 0 or idcg == 0:
        ndcg = 0
    else:
        ndcg = dcg / idcg
    return ndcg

if __name__ == "__main__":
	# ------ 计算推荐列表A的NDCG ------ #
	# A:推荐列表,一维list,存储了推荐算法推荐出的推荐项的id
	# test_set:测试集,一维list,存储了测试集推荐项的id
    ndcg_A = NDCG(A, test_set)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值