L' Hospital(洛必达)法则

如果当 xa(x) 时,两个函数 f(x)F() 都趋于 0 ,那么极限

limxa(x)f(x)F(x)
可能存在,也可能不存在.
通常 把这种极限叫做 未定式,并分别简记为 00 .

在极限是未定式的条件下,通过分子分母同时分别求导再求极限来确定未定式的值的方法称为洛必达(L’Hospital)法则

洛必达法则的两个定理:

对于 xa 时的未定式 00 (亦即 x 时的未定式 )的情形,有以下定理:
定理一:
(1)当 xa 时,函数 f(x) F(x) 都趋向于0;
(2)在点 a 的某去心邻域内,f(x) F(x) 都存在,且 F(x)0
(3) limxaf(x)F(x) 存在(或为无穷大),

limxaf(x)F(x)=limxaf(x)F(x)

对于 x 时的未定式 00 (亦即 xa 时的未定式 )的情形,有以下定理:
定理二:
(1)当 x 时,函数 f(x) F(x) 都趋向于0;
(2)当 |x|>N 时, f(x)F(x) 都存在,且 F(x)0 ;
(3) limxaf(x)F(x) 存在(或为无穷大),

limxaf(x)F(x)=limxaf(x)F(x)

其他还有一些 000i0 型的未定式,也可以通过 00 型的未定式来计算.

下面举一些例子:
1、求

limx0+xnlnx(n>0).

解:
这是 0 未定式.因为
xnlnx=lnx1xn
x0+ 时,上式右端是未定式 ,应用洛必达法则,得
limx0+xnlnx=limx0+(xnn)=0

2、求

limxπ2(secxtanx).

解:
这是 型.因为
secxtanx=1sinxcosx
,
xπ2 时,上式右端是未定式 00 ,应用洛必达法则,得
limxπ2(secxtanx)=limxπ2cosxsinx=0

3、求

limxx+xx


这是 00 未定式.设 y=xx ,取对数得
lny=xlnx
x0+ 时,上式右端是未定式 0 .应用洛必达法则得
limxx+lny=limxx+(xlnx)=limxx+lnx1x=0
因为 y=elny ,而 limy=limelny=limelimlny(x0+) ,所以
limxx+xx=limxx+y=e0=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值